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Introduction

En janvier 2025, la HilmarCorp R&D Division a conduit une premiere série
d’expérimentations séquentielles sur le Bitcoin, dans le cadre de ses travaux sur la mémoire
de marché et les régimes de volatilité. L'objectif était de documenter, sur un actif unique
mais liquide, I'existence éventuelle de dépendances temporelles dans I'enchainement des
états de volatilité, et d’évaluer dans quelle mesure ces régimes peuvent étre modélisés de
facon exploitable pour des briques futures de filtrage du risque et de risk overlay.

Ce travail s’inscrit dans la continuité de la littérature sur les propriétés “noni.i.d.” des
marchés financiers. Depuis les premiers résultats empiriques sur le volatility clustering
(périodes de calme et d’agitation qui se succédent par paquets) et les modeles de type
GARCH, jusqu’aux modeles a changements de régime ou Hidden Markov Models appliqués
aux actions, indices ou taux, de nombreux travaux ont montré que la volatilité suit des
dynamiques de régimes plutdt qu’un bruit blanc homogeéne. La présente note reprend cette
intuition dans un cadre volontairement restreint : un seul actif (BTC), a fréquence
journaliere, avec un label binaire de régime de volatilité et des architectures relativement
simples, afin de mesurer de maniere contrélée ce que “voit” réellement un modele
séquentiel sur ce type de données.

Plus précisément, on cherche ici a répondre a une question opérationnelle : sur
Bitcoin, entre 2017 et 2025, une architecture de type LSTM (Long Short-Term Memory)
disposant d’un historique de 60 jours apporte-t-elle, pour la classification de régimes de
volatilité future, un signal supplémentaire par rapport a des modeles instantanés sans
mémoire (régression logistique, perceptron multicouche) appliqués au vecteur d’indicateurs
a la date t ? Autrement dit, existe-t-il, a cette granularité, une mémoire de régime
exploitable au-dela de la simple “photographie” des indicateurs techniques normalisés
(rendements récents, volatilité réalisée, écarts aux moyennes, volume et participation) ?

Pour isoler cette contribution séquentielle, les modéles sont entrainés sur des
données journalieres de BTC couvrant la période 2017-2025, enrichies d’'un ensemble
cohérent d’indicateurs techniques et normalisées de maniere strictement causale. Deux
baselines non séquentielles : une régression logistique régularisée et un MLP peu profond
fournissent un point de comparaison direct pour juger de I'apport (ou non) du LSTM en
termes de classification de régimes, de qualité probabiliste (log-perte, AUC) et de diagnostics
de risque (matrices de confusion, courbes ROC, précision—rappel).

Les sections suivantes présentent d’abord la construction du label de régime et des
features (Section 2), puis le protocole expérimental et les métriques d’évaluation (Section 3).
La Section 4 discute les résultats empiriques obtenus sur les baselines et le LSTM, en incluant
diagnostics graphiques, études d’ablation et un exemple illustratif de filtrage de risque.
Enfin, la Section 5 propose une lecture critique des résultats, discute la portée du cadre
expérimental et esquisse des pistes de V2, avant de conclure sur le positionnement de ces
travaux dans le programme de recherche de HilmarCorp.
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| Données et préparation

1.1 Sources des données

L’'expérimentation s’appuie sur des données de marché quotidiennes du Bitcoin,
couvrant la période du 17 aolt 2017 au 10 novembre 2025. Cet horizon a été choisi de
maniére a inclure plusieurs cycles complets du marché crypto : bull, bear et phases latérales
offrant ainsi un cadre idéal pour étudier la persistance ou la rupture des régimes
comportementaux.

Les données ont été collectées directement via I’API officielle de Binance, principal
marché spot du Bitcoin depuis 2017. Ce choix s’explique par la profondeur de son carnet
d’ordres, la continuité historique de ses cotations et la granularité horaire des informations
disponibles, qui en font une source de référence pour les travaux quantitatifs sur le BTC.
L'utilisation de I’API, plutot que de fichiers agrégés tiers, garantit une tragabilité intégrale du
pipeline de collecte et la reproductibilité compléete des résultats, conformément aux
standards de recherche de HilmarCorp R&D Division.

Chaque observation journaliere issue de I’APlI comprend :

o le prix d’ouverture (open),

. le prix le plus haut (high),

. le prix le plus bas (low),

o le prix de cloture (close),

o le volume total échangé sur la journée, exprimé en BTC,
o ainsi qu’un horodatage précis en fuseau UTC.

Les séries ont ensuite été réindexées sur un calendrier civil continu, assurant une
progression temporelle uniforme et la préservation des séquences.
Aucune interpolation n’a été appliquée : les journées absentes ont été explicitement
conservées comme manquantes afin de ne pas altérer la dépendance temporelle du signal.
Les volumes extrémes, souvent liés a des consolidations APl ou des anomalies de carnet, ont
été détectés par contréle inter-quantile symétrique (+30) et ajustés sans lissage des prix.

L’ensemble des données brutes ainsi nettoyées : prix, volumes et métadonnées
temporelles constitue la base empirique des expérimentations séquentielles menées dans
cette étude. C’'est a partir de cette fondation que seront ensuite dérivés les indicateurs
techniques et les régimes de marché nécessaires a I'analyse de la mémoire temporelle grace
a un modele séquentiel.

Il Indicateurs dérivés (Feature Engineering)

2.1 contexte
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Pour analyser la mémoire potentielle du marché et préparer I'entrainement d’un
modele séquentiel, il est nécessaire de disposer d’un ensemble d’indicateurs capables de
capturer les dimensions essentielles du comportement du Bitcoin. L’objectif n’est pas
d’optimiser un vecteur de features, mais de constituer un espace de variables cohérent,
économiquement interprétable et suffisamment riche pour permettre au modele de
détecter d’éventuelles dépendances temporelles.

Dans cette étude, nous retenons un ensemble réduit mais représentatif d’indicateurs
dérivés des séries OHLCV journalieres. Ils couvrent quatre grandes dimensions du marché :

o Direction et Momentum : rendements logarithmiques multi-horizons,
oscillateurs mesurant la persistance locale du mouvement ;

o Structure de tendance : moyennes mobiles relatives, indicateurs d’orientation
(MACD) et de force directionnelle (ADX, DI*/DI") ;

o Volatilité et compression : volatilité réalisée, largeur normalisée des bandes
de Bollinger ;

. Participation : volumes relatifs, flux monétaires (MFI) et structure des
chandeliers.

Ces indicateurs ne sont pas utilisés comme outils décisionnels, mais comme proxies
standardisés d’états de marché, permettant de tester si un modele séquentiel est capable
d’en extraire une structure temporelle cohérente. L’enjeu de cette premiere
expérimentation n’est pas la performance prédictive, mais la mise en évidence, ou non
d’une forme de mémaoire dans I’évolution des régimes de volatilité et de tendance.

En travaillant sur données journalieres, 'ambition est de capturer des signaux persistants
plutot que des fluctuations micro-structurelles. Les features retenues sont construites de
maniére causale, normalisées et alignées temporellement, de maniere a fournir un espace
d’entrée propre au réseau LSTM et adapté a I’étude de la continuité et des transitions de
régimes.

2.2 Indicateur technique

2.2.1 Direction

La dimension « Direction » regroupe les variables utilisées pour caractériser
I’évolution immeédiate du prix et la persistance locale du mouvement. Les rendements multi-
horizons mesurent 'amplitude et la continuité du déplacement du prix sur différentes
fenétres temporelles, tandis que les oscillateurs de momentum décrivent I'intensité relative
des gains et des pertes dans le court terme. Ces mesures ne visent pas a formuler une
prévision directionnelle, mais a fournir une représentation normalisée des dynamiques
élémentaires nécessaires a I'analyse séquentielle des régimes de marché.
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A) Rendements multi-horizons (1, 5, 10, 30 jours)

Pour un prix de cléture £ nous utilisons les rendements logarithmiques : additifs dans le
temps et statistiquement plus stables sur longues fenétres :

- P,
7'('k‘)t = hl(Pt——tk) ) k € {1, 5, 10, 30}

En complément, nous suivons le positionnement relatif du prix sur sa moyenne
mobile 30 jours :

/ — 1 i — N29 a
1, MA30(P)t—3()Zz—O Pt —i.

Implémentation utilisée :

df ["ret_1d"] np.log(df["close"]).diff()

df["ret_5d"] = df["close"].pct_change(5)

df ["ret_10d"] = df["close"].pct_change(10)

df ["ret_30d"] = df["close"].pct_change(30)
17

af[“price_norm_3®d"] = df["close"] / df["close"].rolling(30).mean() - 1

B) Momentum local (RSI, Stochastique, MACD)

Les indicateurs de Momentum quantifient la vitesse et I’essoufflement du mouvement
dans le court terme. lls permettent d’identifier les phases d’accélération, les retournements
progressifs et les situations d’exces par rapport au comportement récent du prix. Dans une
perspective séquentielle, ces oscillateurs fournissent des signaux normalisés sur la
dominance acheteuse ou vendeuse instantanée et constituent un complément naturel aux
rendements multi-horizons pour décrire la dynamique locale de marché.

B.1 RSI(14)

Le RSI mesure le ratio des gains/pertes lissés sur 14 jours (lissage de Wilder) ; borné
entre 0 et 100, il sert de proxy normalisé du Momentum court terme : des excursions
prolongées au-dessus (ou au-dessous) de 50 signalent la domination des gains (ou des
pertes) et renseignent sur le régime : tendance ou retour a la moyenne.

Clovis Hilmarcher 7
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100 EMA14(A* P)t
RS, = ( )

RSI14(t) = 100 — ———— S, =
®) 1+ RS,’ " EMA14(A-P)t’

Ou

A"P=max(AP,0) A”P=max(—AP,0) AP=PF,—P—1

Implémentation utilisée :

df["rsi_14"] = ta.momentum.RSIIndicator(df["close"], window=14).rsi()

B.2 Stochastique %K / %D (14, 3)

Le stochastique positionne la cloture dans le range récent ; borné entre 0 et 100, il
sert de proxy de pression relative : des séjours prolongés en zone haute (ou basse) signalent
une domination acheteuse (ou vendeuse) et renseignent sur tendance, cassure ou marché
en range.

(14)
C,— L

(14) (14)°

%K, = 100 -
Hl‘ - Lt

%D, = SMA3(%K)t,

Avec

H"Wt = maxi € [0,13]Ht —i L't = mini € [0,13]Lt — i

!

Implémentation utilisée :

df ["stoch_k"] = ta.momentum.StochasticOscillator(
high=df ["high"], low=df["low"], close=df["close"], window=14).stoch()

df["stoch_d"] = ta.momentum.StochasticOscillator(
high=df ["high"], low=df["low"], close=df["close"], window=14).stoch_signal()

B.3 MACD (12, 26, 9)

Le MACD compare deux moyennes mobiles exponentielles du prix : une rapide, trés
réactive aux variations récentes, et une lente, qui refléte la tendance de fond. Leur écart est

Clovis Hilmarcher 8
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ensuite lissé par une ligne signal ; I’histogramme visualise ce différentiel : il s’étire quand le
momentum accélére, se contracte ou bascule sous zéro quand le mouvement s’essouffle ou
inverse.

MACDt = EMA12(P)t — EMA26(P),, Signalt = EMA9(MACD),, Hist, = MACD, — Signal,.

Implémentation utilisée :

macd = ta.trend.MACD|(df["close"]])
df["macd"] = macd.macd()

df["macd_signal™] = macd.macd_signal()
df["macd_hist"] = macd.macd_diff()

2.2.2 Structure de tendance

La structure de tendance regroupe les indicateurs visant a mesurer I'orientation
générale du marché et la force relative des mouvements. Contrairement aux oscillateurs de
momentum, centrés sur les fluctuations locales, ces mesures s’intéressent a la cohérence
d’'un mouvement prolongé et a son degré d’organisation. Elles permettent de distinguer les
phases de tendance établie, les périodes de consolidation et les situations de marché en
range, éléments essentiels dans un cadre d’analyse séquentielle.

A) Moyennes mobiles (écarts normalisés 10, 20, 50, 200 jours)

Les moyennes mobiles servent ici a mesurer le niveau de portage du prix par rapport
a sa tendance de fond. Plut6t que d’utiliser les niveaux bruts, nous suivons I’écart relatif du
prix de cloture 2 a sa moyenne mobile simple sur n jours, ce qui fournit une mesure plus
stationnaire et moins redondante avec le prix.

Pour une moyenne mobile simple sur n jours :

1
MAn(P)t ==Y "i=0""'Pt—i, n € {10, 20,50, 200},

n
I’écart normalisé est défini par :

dt = B 1
MAn(P),

Clovis Hilmarcher 9
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Un %" durablement positif traduit un portage haussier (prix au-dessus de sa
c(n)

moyenne), tandis qu’un * négatif et persistant indique un biais baissier.

Implémentation utilisée :

df["ma_10"] df["close"] / df["close"].rolling(10).mean() - 1
df["ma_20"] = df["close"] / df["close"].rolling(20).mean() - 1

df["ma_50"]1 = df["close"] / df["close"].rolling(50).mean() - 1
df["ma_200"] = df["close"] / df["close"].rolling(200).mean() - 1

B) CCI(20)

Le Commodity Channel Index mesure I’écart normalisé du prix typique a sa moyenne
récente. |l sert ici a détecter les phases de sur- / sous-extension autour d’un régime de
tendance : des valeurs élevées (ou trés basses) et persistantes signalent un mouvement
organisé, tandis que les retours rapides vers la zone neutre traduisent plutét un
rééquilibrage.

On définit d’abord le prix typique :

Puis la moyenne mobile simple et la déviation moyenne sur 20 jours :

1 ¢ . 1 : ¢
MA20(TP)t = %Zz = 0YTPt —i,  MDy(TP)t = %Zz = 019 |TP,_; — MA,\(TP), |.

Le CCI(20) est alors donné par :

TP, — MA20(TP)t
120(t) = L .
CCT20(2) 0,015 x MD20(TP),

Des niveaux extrémes et durables de ““ indiquent une extension marquée du prix
par rapport a son équilibre local, utile pour qualifier I’état du trend (mature, en extension,
en normalisation).

Implémentation utilisée :
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df["cci_20"] = ta.trend.CCIIndicator(
high=df["high"],
low=df ["low"],

close=df ["close"],
window=20
).cci()

C) ADX(14), DI*, DI
L’ Average Directional Index (ADX) mesure la force d’une tendance, indépendamment
de son sens, tandis que P/ et DI en décrivent I'orientation. Ensemble, ils permettent de

distinguer les phases de trend organisé des périodes de marché en range/chop, point crucial
pour un modele séquentiel.

On part des mouvements directionnels positifs et négatifs :
+DM, = max(H, — H, {,0), — DM, = max(L, , — L,,0),
et de la True Range :
TR, = max{H, — L,, |H, — Cy_4|, |[L, — C;_4}.

Apres lissage de type Wilder sur 14 jours, on définit :

EMA (+DM) EMA (—DM)
DI;" =100 ! DI =100 !
t * "EMA(TR), ’ f * "EMA(TR), ’
DI — DI
DXﬁZNOX‘ L f‘, ADX, = EMA(DX),.
DI} + DI,

e Un ADX élevé indique un mouvement structuré (haussier si 2/~ > DI, baissier sinon).
e Un ADX faible signale un marché peu directionnel, ou la volatilité est moins “portée”
par un trend.

Dans notre cadre, ces variables servent a distinguer les segments ol la mémoire séquentielle
porte un trend clair de ceux ou le marché oscille autour d’un équilibre local.
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Implémentation utilisée :

adx14 = ta.trend.ADXIndicator(
high=df ["high"],
low=df ["low"],
close=df["close"],

window=14
)
df ["adx_14"] adx14.adx()
df ["adx_pos"] = adx14.adx_pos()
df ["adx_neg"] = adx14.adx_neg()

2.2.3 Volatilité et compression

La volatilité et la compression de prix décrivent I'amplitude des
mouvements et la facon dont I'incertitude se concentre ou se détend dans le
temps. La ou la structure de tendance s’intéresse a la direction du mouvement,
ces indicateurs capturent I'intensité du risque porté par chaque régime. lls
permettent d’identifier les phases de volatilité élevée et persistante, les
épisodes de contraction (“volatility squeeze”) et les transitions entre régimes
calmes et stressés, éléments clés pour un modeéle séquentiel.

A) Volatilité réalisée (7, 30 jours)
La volatilité réalisée mesure la dispersion observée des rendements sur une fenétre
glissante. Elle fournit une estimation non paramétrique du risque effectif porté par le

marché, en agrégeant les chocs de prix récents.

A partir des rendements logarithmiques journaliers

P
()

La volatilité réalisée sur k jours est définie par :

11\7 1 B
Okt = %Z (T't i T};‘t)Qa ke {7a 30}:

=0

Ou " désigne la moyenne des rendements sur la méme fenétre.
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Dans cette étude, “** capture la volatilité courte, sensible aux chocs récents, tandis

T30

que "%t décrit le niveau de risque de fond du régime courant.

Implémentation utilisée :

df["vol_7d"] = df["ret_1d"].rolling(7).std()

65 dfl["vol_30d"] = df["ret_1d"].rolling(30).std|()|

B) Bandes de Bollinger : largeur normalisée

Les bandes de Bollinger quantifient la dispersion du prix autour de sa moyenne
mobile, en combinant information de tendance et de volatilité. Dans notre cas, nous
retenons uniquement la largeur relative des bandes, utilisée comme proxy de compression /
expansion du marché.

MAy(P)

Pour une moyenne mobile t et un écart-type ?20,% sur 20 jours, les bandes

classiques s’écrivent :
BB"utt — MA20(P)t + 2020, ¢, BBY*t = MA20(P)t — 2020, t.
Nous suivons la largeur normalisée :

BB?aut o BBbast
w, =
: MA20(P),

III

qui mesure I'ouverture relative du “canal” de prix.

Un v faible indique une phase de compression (range étroit, volatilité contenue),
souvent associée a des régimes calmes ou a des phases de pré-rupture. A I'inverse, un v
durablement élevé traduit une expansion de volatilité, typique des régimes directionnels
intenses ou des épisodes de stress.

Implémentation utilisée :

bb = BollingerBands(close=df["close"], window=20, window_dev=2)

df ["boll_width"] = bb.bollinger_wband()
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2.2.4 Participation

La participation de marché regroupe les indicateurs liés aux flux échangés et a la
micro-structure des chandeliers. La ou la direction et la tendance décrivent le mouvement
du prix, ces mesures renseignent sur I'intensité des échanges et la facon dont le prix se
forme a I'intérieur de chaque séance. Elles sont particulierement utiles pour distinguer les
phases de marché “portées” par un flux significatif de celles ou les variations de prix se
produisent sur des volumes faibles ou déséquilibrés.

A) Volume relatif 20 jours

Le volume relatif a 20 jours mesure I'intensité des échanges du jour par rapport a un
niveau de référence récent. Il sert ici de proxy simple de “sur-activité” ou de “désert de
liquidité”, deux configurations souvent associées a des transitions de régime ou a des phases
de capitulation/exubérance.

On définit d’abord la moyenne mobile simple des volumes sur 20 jours :

19

— 1
V20<t) - % Vt i
=0

(4

puis le volume relatif :

vol_rel 20d(t) = v

Un volrel 20d > 1 gignale une séance anormalement active, tandis qu’une valeur
durablement inférieure a 1 traduit un environnement de liquidité réduite. Ce type
d’information permet d’identifier les phases de marché marquées par un afflux ou un retrait
de participation, souvent associées aux changements d’équilibre entre acheteurs et
vendeurs.

Implémentation utilisée :

df["vol_rel_20d"] = df["volume"] / df["volume"].rolling(20).mean()

B) Money Flow Index (MFI 14)

Le Money Flow Index combine prix et volume pour estimer la pression d’achat ou de
vente sur une fenétre donnée. Contrairement a un volume brut, il pondére les échanges par
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la direction des mouvements de prix, ce qui en fait un proxy de “flux directionnel” plutét que
de simple activité.

Le MFI sur 14 jours est calculé a partir du prix typique 7% (moyenne de”. % et “) des
volumes et des flux monétaires positifs/négatifs. Il est borné entre 0 et 100 :

o des valeurs élevées et persistantes indiquent une pression acheteuse dominante ;
e des valeurs faibles signalent une pression vendeuse prolongée.

Le MFLu renseigne ainsi sur I'intensité directionnelle sous-jacente aux mouvements
observés : il met en évidence les phases ou les flux monétaires soutiennent une tendance,
ainsi que celles ou une divergence prix-volume apparait souvent précurseur d’un
affaiblissement ou d’une inversion du mouvement.

Implémentation utilisée :

df ["mfi_14"] = ta.volume.MFIIndicator(
high=df ["high"],
low=df ["low"],
close=df ["close"],

volume=df["volume"],
window=14 N
96 ).money_flow_index[ﬂ

C) Ratios de chandeliers (corps / ombres)

Les ratios de chandeliers décrivent la facon dont le prix a évolué a I'intérieur de la
séance : part du mouvement réalisée dans le corps (open = close) versus les extrémes
atteints (high/low). lls fournissent une information fine sur la structure intrajournaliére, sans
recourir a une granularité infra-day.

On définit :
e le corps relatif :

G — 0,

ndle_body, = ———~—
candle_body, H—L +c
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o |'ombre supérieure relative :

H, —max(C,,0,)
H —L +e

upper_shadow, =

e |'ombre inférieure relative :

min(C,, 0,) — L,
H —L +e ’

lower_shadow, =

Avec € un terme de stabilisation numérique.

Un corps large associé a des ombres réduites traduit un mouvement directionnel
affirmé au cours de la séance. A I'inverse, des ombres longues et un corps restreint reflétent
davantage le rejet des extrémes, I’hésitation ou des épisodes de micro-volatilité. Ces
variables sont utiles pour distinguer les journées de conviction nette des configurations plus
neutres ou techniques.

Implémentation utilisée :

df ["candle_body"] = (df["close"] - df["open"]) / (df["high"] - df["low"] + 1le-8)
df ["upper_shadow"] (df["high"] - np.maximum(df["close"], df["open"1)) / (df["high"] - df["low"] + 1e-8)
df ["lower_shadow"] (np.minimum(df["close"], df["open"]) - df["low"]) / (df["high"] - df["low"] + le-8)

lll Méthodologie expérimentale

3.1 Construction du label de régime

A) Contexte

Les marchés financiers et plus particulierement le Bitcoin ne se comportent jamais
comme un processus homogene dans le temps. lIs évoluent par régimes successifs, chacun
caractérisé par un niveau distinct d’incertitude, de dispersion des prix et de pression
directionnelle.

Dans la littérature quantitative, cette organisation temporelle se traduit par un
phénomeéne robuste : la volatilité ne se distribue pas uniformément mais se regroupe en
blocs cohérents, souvent appelés volatility clusters.
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Certaines phases se déroulent sous un régime d’équilibre local, ou les variations
guotidiennes demeurent contenues autour de leur norme récente ; d’autres basculent dans
un régime d’expansion du risque, marqué par une amplification soudaine et persistante de la
dispersion des rendements.

Ces transitions ne sont ni aléatoires, ni purement erratiques : elles portent une
structure temporelle que les modeles séquentiels (LSTM) sont précisément congus pour
capturer.

L’objectif du label est donc de formaliser cette segmentation naturelle du marché en
construisant une mesure opérationnelle capable d’indiquer si, a une date t, le systéme se
situe dans un environnement de risque “normalisé” ou dans une phase ou le niveau
d’incertitude anticipé excede significativement sa référence historique.

Ce choix est motivé par une considération opérationnelle : il formalise la distinction
entre un environnement de risque “normalisé” et des phases ou la volatilité anticipée
dépasse significativement son niveau de référence. Un marché “calme” n’est pas celui ou il
ne se passe rien, mais celui ou les fluctuations demeurent proportionnées a leur histoire
récente.

Alinverse, un marché “tendu” est celui ou les chocs futurs attendus dépassent la
capacité du marché a absorber ces variations, signalant potentiellement I’arrivée d’un
changement d’équilibre, d’un stress latent, ou d’une transition de régime.

B) Définition opérationnelle du label

La définition du label exploite exclusivement des objets déja établis dans la section 2 :
rendements logarithmiques et volatilité réalisée. L'idée centrale est d’évaluer si la volatilité
réalisée dans les jours a venir dépasse significativement la volatilité de fond estimée sur une
fenétre longue.

La construction se déroule en trois temps :
1. Mesure de la volatilité future, obtenue en calculant la dispersion réalisée des

rendements dans I’horizon [ * 1.+ FWDHORIZON,  Cette mesure représente la quantité
d’incertitude que le marché s’appréte a délivrer immédiatement apres t.

2. Mesure de la volatilité de référence, calculée sur une fenétre plus longue (30 jours),
qui reflete le niveau de risque “normalisé” du régime courant.

3. Comparaison des deux niveaux via un ratio :
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. VOlfuturo
R, = vol.
VOlieference

Lorsque ce ratio excéde 1.20, le marché bascule dans un régime considéré comme
significativement plus volatil que sa norme récente. Ce seuil de +20 % est cohérent avec les
discontinuités empiriques observées sur BTC : la majorité des épisodes de stress se
manifeste par une rupture nette de cette magnitude. Le label refléte ainsi une structure de
volatilité observée dans les données, plutot qu’une segmentation arbitraire imposée a priori.

Le label obtenu est volontairement binaire : non pas pour simplifier, mais pour
stabiliser I'analyse séquentielle et éviter les ambiguités propres aux partitions multi-classes.
Il constitue un objet propre, robuste, interprétable, et surtout parfaitement adapté a I'étude
de la mémoire temporelle.

Implémentation utilisée

build_regime_labels(df: pd.DataFrame) -> pd.DataFrame:
df = df.copy()
df = df.sort_values("timestamp").reset_index(drop=

df["ret_1d"] = np.log(df["close"]).diff()

fwd_vol = (
df ["ret_1d"]
.shift(-1)
. rolling (FWD_HORIZON)
.std()
)
df["fwd_vol_3d"] = fwd_vol.shift(-(FWD_HORIZON - 1))

df["ref_vol_30d"] = df["ret_1d"].rolling(REF_WINDOW)

df["vol_ratio"] = df["fwd_vol_3d"] / df["ref_vol_30d"]

= df.replace( [np.inf, =-np.infl, np.nan)
= df.dropna(subset=["fwd_vol_3d", "ref_vol_3@d", "vol_ratio"]).reset_index(drop=

df["regime"] = (df["vol_ratio"] > VOL_RATIO_THRESHOLD).astype(int)

return df

3.2 Normalisation des features

Les indicateurs décrits précédemment présentent des échelles et des distributions
hétérogenes : rendements logarithmiques potentiellement non bornés, mesures de volatilité,
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écarts normalisés aux moyennes mobiles, oscillateurs bornés entre 0 et 100, proxies de flux
et de participation. Avant I'entrainement des modéles (régressions de base, MLP, LSTM), il est
nécessaire de ramener ces variables dans un espace numérique cohérent, afin d’éviter
gu’une famille de features ne domine artificiellement les autres du seul fait de son
échelle.Dans cette premiere expérimentation, nous retenons une approche simple et
standard : chaque indicateur est centré et réduit individuellement sur I’échantillon d’étude.

Pour une variable ¥t (colonne j du jeu de données), on calcule :

e la moyenne empirique #'sur I’horizon considéré ;
y .

e |'écart-type empirique a’,

Puis on construit la version normalisée :

) ]
~j _ Ty — M
;Lt — %.

O’«/

Cette transformation est appliquée colonne par colonne a I'ensemble des features
utilisées dans les modeles, sans toucher a la variable cible (le régime) ni aux horodatages.
Elle a trois effets principaux :

o aligner les ordres de grandeur des différentes familles d’indicateurs (direction,
tendance, volatilité, participation) ;

e stabiliser la dynamique des gradients lors de I'optimisation des modeles neuronaux ;

e limiter le poids arbitraire des variables naturellement plus volatiles (rendements,
volatilité réalisée, proxies de volume).

Dans le cadre de ce travail exploratoire, la normalisation est réalisée en deux temps : les
moyennes et écarts-types sont estimés une fois pour toutes sur le seul bloc d’entrainement,
puis appliqués telles quelles aux données de validation. Les modéles de base (régression
logistique, MLP) et le modeéle séquentiel utilisent ainsi exactement le méme vecteur de
features normalisées, ce qui permet de comparer de maniére homogéne leurs performances
tout en respectant strictement la causalité temporelle.

Implémentation utilisée :
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from sklearn.preprocessing import StandardScaler

feature_cols = [
"ret_1d", "ret_5d", "ret_l0d", "ret_3ed",
"price_norm_30d",
"rsi_14", "“stoch_k", "stoch_d",
"macd", "macd_signal", "macd_hist"
"cci_20", "adx_14", "adx_pos"
"vol_7d", "vol_3ed", "boll_width",
"ma_10", "ma_20", "ma_50", '"ma_200",
"vol_rel_20d", "mfi_14",
"candle_body", "upper_shadow", "lower_shadow"

1

scaler = StandardScaler()
df [feature_cols] = scaler.fit_transform(df[feature_cols])

3.3 Mise en forme séquentielle des données (fenétrage LSTM)

A) Contexte

Les modeéles séquentiels et en particulier les architectures de type LSTM (Long Short-
Term Memory) ne consomment pas des observations indépendantes, mais des segments
temporels structurés.
L'objectif n’est plus d’expliquer un label a partir d’un vecteur instantané, mais d’identifier la
cohérence interne d’une trajectoire, ses ruptures, et les motifs réguliers qui précédent un
changement de régime.

Pour cela, les données normalisées issues des sections précédentes doivent étre
transformées en un tenseur tridimensionnel :

e N:nombre total de séquences exploitables,
e T:longueur de la fenétre temporelle (lookback),
e F:nombre total de features normalisées.

Cette opération appelée sliding window transformation fait passer la table chronologique
bidimensionnelle classique :

a un objet structuré contenant, pour chaque date t, I'historique complet nécessaire au
LSTM :
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Ce format respecte strictement la causalité : aucune information future n’est injectée dans la
séquence d’entrée.

B) Justification du choix du lookback

Le choix de la fenétre temporelle Test un parametre crucial : une fenétre trop courte
manque de contexte, une fenétre trop longue dilue I'information pertinente et augmente le
bruit. Ici, I'objectif n’est pas de prédire un prix mais d’analyser la mémoire des régimes de
volatilité.
La littérature empirique sur BTC montre que :

e les cycles de compression = explosion de volatilité s’étalent généralement sur 15 a

40 jours,

¢ les transitions de tendance structurelle se forment sur 1 a 3 mois,

o les clusters de volatilité persistante ont une demi-vie comprise entre 8 et 20 jours.
Un horizon de T = 60 jours s'imposent donc comme un compromis robuste :

o suffisamment long pour capter les débuts et fins de clusters,

o suffisamment court pour éviter la sur-dispersion et le “vanishing information”,

e cohérent avec les pratiques des desks volatility / derivatives en quant research.

Ce choix améliore aussi la stabilité numérique du LSTM en lui offrant des séquences riches
mais non dégénérées.

C) Construction formelle des séquences

Soit une série chronologique normalisée :
X ={x,X; e, Xpy ..., X, } 0 X, €R"

Pour chaque date t = T, on définit une séquence :

Le label associé est simplement :

Clovis Hilmarcher 21
HilmarCorp — R&D Division



Yy, = regime(t)

avec garantie que :

S, ne contient aucune information postrieure f.

D) Précautions causales et alignement
Afin d’éviter tout leakage temporel :

e Le label a prédire est positionné sur la fin de la fenétre, jamais a l'intérieur.

e Aucun indicateur technique n’utilise de données futures, tous sont calculés en
backward-looking.

e La normalisation est effectuée avant le fenétrage, mais exclusivement sur la zone
d’entrainement.

e Le split train/val/test est strictement chronologique, garantissant la validité
empirique du protocole.

e Les NaN initiaux liés aux rolling windows sont supprimés avant construction des
séquences.

Ces contraintes rapprochent I'expérience des pratiques industrielles, ou la causalité
opérationnelle est impérative (risk, execution, derivatives modelling).

E) Schéma explicatif

Fenétre glissante (lookback = 60 jours)

[x[t-59] x[t-58] ... x[t-1] x[t]

Séquence S_t

Label

regimel[t]
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Implémentation utilisée :

RegimeDataset(Dataset):
__init__(self, df: pd.DataFrame, feature_cols, seq_len: int):
self.df = df
self.feature_cols = feature_cols
self.seq_len = seq_len

__len__(self):
return len(self.df) - self.seq_len

__getitem__(self, idx):
seq = self.df.loc[idx:idx + self.seq_len - 1, self.feature_cols].values
y = int(self.df.loc[idx + self.seq len, "regime"])
return (
torch.tensor(seq, dtype=torch.float32),
torch.tensor(y, dtype=torch.long),

3.4 Modeéles étudiés

A) Contexte

Sur la base du jeu de données construit dans les sections précédentes (rendements
journaliers, indicateurs dérivés normalisés, label binaire de régime fondé sur la volatilité
réalisée), trois familles de modeles de classification sont considérées, toutes entrainées sous
le méme protocole temporel. L'objectif n’est pas d’optimiser une performance prédictive
absolue, mais de tester empiriquement I'existence d’'une mémoire exploitable dans
I’enchainement des régimes de marché.

Deux grandes classes de modeles sont mises en regard.

La premiere regroupe des modeles instantanés sans mémoire explicite : une
régression logistique et un perceptron multicouche (MLP). Pour ces modeéles, chaque
observation est décrite par un vecteur de variables explicatives normalisées: € &’
(rendements, volatilité réalisée, écarts aux moyennes mobiles, indicateurs de participation,
etc.) ; 'ordre dans lequel ces configurations de marché se succédent n’est jamais pris en
compte. La seconde classe repose sur un modele séquentiel a mémoire explicite de type
LSTM, qui regoit en entrée, pour chaque date t, une trajectoire normalisée de 60 jours

(@i 2 et peut, en principe, exploiter la structure temporelle des transitions de régime.

Dans ce cadre, la régression logistique joue le role de référence linéaire pleinement
interprétable : elle teste I'existence d’une séparation affine entre régimes dans I'espace des
indicateurs. Le MLP étend ce dispositif en autorisant des combinaisons non linéaires des
mémes variables, tout en restant strictement amnésique : il ne voit jamais |’historique,
seulement l'instantané du vecteur Z: . Le LSTM, enfin, occupe un réle différent : il ne se
limite pas a raffiner une frontiere de décision dans &*, mais cherche a quantifier 'apport
spécifique de la dynamique séquentielle en modélisant directement I’évolution des
trajectoires sur 60 jours.
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La comparaison entre ces modeles est conduite a protocole égal : mémes variables
normalisées, méme label de régime, méme découpage chronologique train/validation,
méme horizon d’étude. Toute différence de performance ne peut donc provenir que de la
nature de I'information effectivement consommeée — instantanée pour les baselines,
séquentielle pour le LSTM. Les sous-sections suivantes détaillent la formulation et le role
méthodologique des baselines non séquentielles, qui serviront de point d’ancrage pour
I'interprétation des résultats du LSTM.

B) Régression logistique (baseline linéaire)

La régression logistique constitue le point de départ le plus simple pour la
classification des régimes. Le modele ne cherche pas a exploiter I’historique des trajectoires,
mais uniquement la configuration du vecteur %t a la date t. Chaque journée est ainsi
résumée par un vecteur normalisé ¥ € {0:1] indiquant si le marché se trouve, immédiatement
aprés t, dans un régime de volatilité future “normalisée”. “ = ) ou “tendue” ¢~
de la section 3.1.

1
)au sens

La régression logistique associe a chaque observation ¥t une probabilité
conditionnelle d’étre en régime tendu de la forme :

1
I+ oxp (—(w'z, +5))’

[P(’.Ut =1

T;) = U(w*wt +b) =

Ou v €R" est le vecteur de coefficients et ® € R un biais scalaire. La frontiére de

L . e T, _ , -
décision correspond au demi-espace défini par ¥ Z: * b=0dans| espace des indicateurs :
un changement de signe de cette quantité se traduit par un basculement de probabilité de
part et d’autre du seuil %

Les paramétres (“'%) sont estimés par maximum de vraisemblance régularisé. En

notant 7= P =112 |3 probabilité prédite et ”=I’ensemble des indices d’entrainement, la
fonction de co(t considérée est :

L(w,b) = — Z [yt logf)t + (1 —y,) log(1 _f)t)] + A

teD

~=train

[wl3,

Avec A > 0 un parametre de régularisation L2. Le terme quadratique sur w limite la
sensibilité du modele a des co-mouvements spécifiques de certaines variables — notamment

Clovis Hilmarcher 24
HilmarCorp — R&D Division



celles liées a la direction et a la volatilité, naturellement plus volatiles — et impose une
structure plus parcimonieuse aux coefficients.

Dans ce dispositif, la régression logistique joue deux rdles distincts. D’'une part, elle
offre une référence interprétable : chaque composante de w peut étre lue comme un poids
directionnel porté par une variable donnée (rendement court terme, volatilité réalisée,
volume relatif, etc.), ce qui permet d’identifier les indicateurs qui contribuent le plus, de
maniére linéaire, a la séparation entre régimes. D’autre part, elle fournit une borne
inférieure “sans mémoire” sur ce qu’il est possible d’expliquer a partir du seul instantané des
indicateurs, sans aucune information sur I'ordre dans lequel les états de marché se
succedent.

Les performances de cette baseline linéaire sur I’échantillon de validation servent de
point de comparaison direct pour évaluer I'apport des modéles non linéaires (MLP) et,
surtout, du modele séquentiel LSTM : toute amélioration significative devra étre interprétée
a la lumiére de I'information supplémentaire exploitée (non-linéarité instantanée ou
dynamique temporelle).

Implémentation utilisée :

En pratique, la régression logistique est implémentée via la classe LogisticRegression
de la bibliotheque scikit-learn, avec pénalisation L2 par défaut et optimisation par maximum
de vraisemblance régularisé. Les variables explicatives sont préalablement centrées-
réduites, et le découpage train/validation est strictement chronologique, identique a celui
utilisé pour les autres modeles. Le code correspondant est le suivant :

def run_baselines(df, feature_cols, train_ratio=0.8):
X = df[feature_cols].values
y = df["regime"].values
split_idx = int(train_ratio x len(df))
X_tr, X_val = X[:split_idx], X[split_idx:]
y_tr, y_val = y[:split_idx], y[split_idx:]

results = {}

logreg = LogisticRegression(max_iter=200)

logreg.fit(X_tr, y_tr)

results["logistic"] = logreg.score(X_val, y val)

print(f" [BASELINE] logistic val_acc={results['logistic']:.4f}")

C) Perceptron multicouche (MLP)

Le perceptron multicouche (MLP) prolonge la régression logistique en autorisant des
transformations non linéaires du vecteur de variables explicatives. La ou le modéle linéaire
ne peut séparer les régimes que par un hyperplan dans I'espace des indicateurs, le MLP
introduit des couches cachées apprenant des combinaisons non linéaires des mémes
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signaux. La structure temporelle reste cependant inchangée : comme pour la régression
logistique, chaque observation est traitée indépendamment, sur la base de Z: uniguement.

On considére toujours pour chaque date t un vecteur normalisé # € &" et un label

binaire ¥ € %1} Dans cette étude, on retient une architecture simple 3 deux couches
cachées entierement connectées. En notation compacte, le réseau réalise la transformation
suivante :

h;l) — C‘D(W(”:L't + b(“ )’

o~ —~
SV}

h) = ¢ (WOh + @),

~ (3)T 1, (2) (3)
p,=o(w? h” +b%),
. (1) 64xF . W € R¥2x64 . . ;
ou: WWeR et sont les matrices de poids des couches cachées,

b‘“, b<'2)’ b(il)
€ (0,1)

(3) 32 . . .. A( -
w € R™ e vecteur de poids de la couche de sortie, les biais correspondants,Q( )

la sigmoide logistique qui renvoie une probabilité d’étre en régime tendu.

Les parameétres du réseau
, ‘or 1 (9 y
0 — {ur(l)7 b('l), U”*“J, btu)7 ’UJ(";), b(“;']}

sont estimés en minimisant une log-perte binaire régularisée sur I’échantillon
d’entrainement :

£00)=— Y [ylogh+ (1—y)log(1—p)]+ 1) WP,
k

t€D,1ain

ou le second terme contrdle la norme des poids des couches cachées (régularisation
L2) afin de limiter le sur-apprentissage sur des configurations rares de variables.
L’optimisation est réalisée par descente de gradient stochastique (type Adam dans
I'implémentation scikit-learn), avec itérations successives jusqu’a convergence numérique
ou jusqu’a un nombre maximal d’epochs. L’entrainement s’effectue sur les mémes variables
normalisées et avec le méme découpage chronologique train/validation que pour la
régression logistique, de fagon a garantir une comparaison cohérente.

Dans ce cadre, le MLP occupe trois fonctions méthodologiques complémentaires. Il
fournit d’abord une baseline non linéaire sans mémoire : en le comparant a la régression
logistique, on mesure ce que I'on gagne simplement en passant d’un classificateur linéaire a
un modele capable de capturer des interactions complexes entre indicateurs — par exemple
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une configuration de type “volatilité réalisée élevée + volume relatif anormalement fort +
MACD en extension” — tout en restant aveugle a la structure séquentielle. Il sert ensuite de
test de richesse du vecteur de variables : si le MLP n"améliore pas significativement la
classification par rapport a la régression logistique, cela suggere que I'essentiel de
I'information pertinente est capté de maniére quasi linéaire, et que le bénéfice potentiel
d’un modele séquentiel résidera principalement dans la mémoire temporelle plutét que
dans la non-linéarité statique. Enfin, le MLP constitue un point de comparaison direct pour le
LSTM : les deux modeles partagent exactement le méme espace de variables normalisées,
mais seul le LSTM observe Ihistorique complet “ %) |’écart de performance entre les
deux renseigne donc sur la contribution propre de la dynamique séquentielle par rapport a
une simple projection non linéaire de 'instantané.

Implémentation utilisée :

Le MLP est implémenté via la classe MLPClassifier de scikit-learn, avec deux couches
cachées de tailles 64 et 32 neurones, fonction d’activation ReLU, pénalisation L2 par défaut
et un maximum de 500 itérations d’optimisation. Les mémes matrices X Xl et vecteurs
de labels Y= %l que pour la régression logistique sont utilisés. Le code est le suivant :

train>

mlp = MLPClassifier(hidden_layer_sizes=(64, 32), max_iter=500, random_state=42)
mlp. fit(X_tr, y_tr)

results["mlp"] = mlp.score(X val, y_val)
print(f" [BASELINE] mlp val_acc={results['mlp']:.4f}"

D) Réseau séquentiel a mémoire explicite (LSTM)

L’approche séquentielle introduit une différence conceptuelle majeure par rapport
aux modeles précédents. Ni la régression logistique ni le MLP n’ont acces a I'ordre temporel
dans lequel les configurations de marché se succedent : chaque état Z: est traité isolément,
comme si I’'enchainement des régimes n’avait aucune structure exploitable. Or I'organisation
empirique de la volatilité (clusters persistants, phases de compression puis d’expansion,
transitions progressives entre épisodes de calme et de stress) suggere qu’une forme de
dépendance temporelle peut étre porteuse d’information. “ 7+ Cette mémoire n’est
pas une simple moyenne mobile : elle résulte d’'un mécanisme récursif qui pondere
dynamiquement ce qu’il convient de retenir, d’oublier ou de mettre a jour.

Le LSTM (Long Short-Term Memory) introduit précisément une mémoire interne
capable d’intégrer, pour chaque observation, non seulement I'état courant Z:, mais aussi la
trajectoire historique @-r--7).. Cette mémoire n’est pas une simple moyenne mobile : elle
résulte d’un mécanisme récursif qui pondere dynamiquement ce qu’il convient de retenir,
d’oublier ou de mettre a jour.
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Formellement, & partir d’une séquence normalisée 7% |e LSTM maintient un
état caché et un état mémoire % mis a jour a chaque pas #<{-7+1L--1} yia :

[ =0Wixi+ Ushy_1+ by) (porte d’oubli)
i, =oWx+Uhg_1+Db) (porte d’injection)

¢ =tanh(Wyx, + U.hy_1+b,)  (candidate memoire)

Ck =f,Ock-1 + i OF (mise éjour du reservoir)
o =0(Wyxi+ Uyhy_1+b,) (porte de sortie)
hy, = 0, ® tanh(cy) (projection séquentielle)

ou ““) est une sigmoide logistique,® le produit élément-par-élément, et les matrice
Jles paramétres appris lors de I'entrainement. Le réseau prétend alors a une
probabilité d’appartenance au régime tendu via :

(W, Uy, ..

pp=o0(w'h,+b)

Les parametres = 7o Uebow:5) gont estimés par minimisation d’une log-perte

binaire régularisée, comme pour le MLP, mais appliquée sur des séquences :

£(0) = — Z [y, log B, + (1 —y,) log(1 — ;) | + A6l

tED,pin
L’entrailnement s’effectue sans aucun chevauchement entre validation et
entrainement, et avec une normalisation strictement établie sur I’"horizon d’apprentissage,
afin d’éviter tout leakage temporel lié au calcul des statistiques de normalisation. La
comparaison avec la régression logistique et le MLP est réalisée a protocole égal : mémes
features, méme label, méme split chronologique, méme critére de validation. La seule
source de différence réside donc dans I'accés éventuel au passé “ 7%,

Cette distinction structurelle place le LSTM dans un réle méthodologique précis : il ne
cherche pas a obtenir la meilleure métrique de classification possible, mais a quantifier
I’existence d’une dépendance exploitable dans la dynamique de transition entre régimes. Si
les performances du LSTM dépassent significativement celles du MLP, cela indique que
I'information pertinente n’est pas contenue uniquement dans la configuration instantanée
des indicateurs, mais également dans la trajectoire qui les relie, confirmant empiriquement
la présence d’une mémoire séquentielle dans I'organisation des régimes de volatilité.

Implémentation utilisée :

Dans ces premieres expériences, le modele séquentiel est implémenté en PyTorch via
un module RegimeLSTM. La partie récurrente est constituée d’une couche LSTM a 128 unités
cachées (hidden_size = 128, num_layers = 1, batch_first = True), alimentée par des
séquences de longueur 60 construites comme en 3.3.
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La sortie de la couche LSTM (état caché a la derniere date de la fenétre) est ensuite
projetée par un petit réseau entierement connecté de type

Wy, by ReLU Wy, b,
>h, € R"® 5 R* 5 R* 5 R? >

dont les deux composantes correspondent aux logits des classes “régime normalisé’

(0) et “régime tendu” (1).

L’optimisation est réalisée avec I'algorithme Adam (taux d’apprentissage fixé a 1073,

)

sur des mini-batches de 32 séquences, en minimisant une entropie croisée binaire standard

(fonction CrossEntropyLoss de PyTorch), sans pondération explicite des classes. Le run de
référence présenté en section 4 repose sur 40 époques d’apprentissage successives, avec
suivi systématique de la log-perte et de I'accuracy sur I’échantillon de validation a chaque
epoch.

s RegimeLSTM(nn.Module):
__init_ (self, input_dim, hidden_dim=128):
super().__init__ ()
self.lstm = nn.LSTM(
input_size=input_dim,
hidden_size=hidden_dim,
num_layers=1,
batch_first=True,

)

self.fc = nn.Sequential(

nn.Linear(hidden_dim, 64),
nn.ReLU(),
nn.Linear(64, 2),

forward(self, x):

out, (h_n, _) = self.lstm(x)
last_h = h_n[-1]

return self.fc(last_h)

3.5 Protocole d’entrainement et d’évaluation

L’ensemble des modeles est entrainé sous un protocole commun, de maniéere a ce

gue les différences de performance reflétent uniguement la nature de I'information utilisée

(instantanée vs séquentielle), et non des choix de calibration hétérogénes. Le protocole
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controble successivement : le découpage temporel, la gestion du déséquilibre de classes, la
procédure d’optimisation et les métriques d’évaluation.

A) Découpage temporel et respect de la causalité

Le jeu de données séquentiel construit en 3.3 est scindé en deux blocs chronologiques
contigus :

o Entrainement : premier bloc couvrant environ 80 % des observations, du 17 ao(t
2017 jusqu’a une date de coupure " ;

e Validation : bloc résiduel couvrant les 20 % de dates restants, de % *! jusqu’au 10
novembre 2025.

Une séquence (Zi-r:1,-%:) appartient a un unique bloc, déterminé par sa derniére date
t. Les statistiques de normalisation sont recalculées exclusivement sur le bloc
d’entrainement, puis appliquées telles quelles au bloc de validation. Aucun recouvrement
n’est donc possible : ni au niveau des labels, ni au niveau des features.

Dans ces premieres expériences, aucun bloc de test distinct n’est encore utilisé :
toute I'analyse hors-échantillon repose sur le segment de validation, afin de concentrer les
observations disponibles sur I’estimation des régimes et la comparaison des architectures.

B) Gestion du déséquilibre de classes

Le label binaire défini en 3.1 est par construction asymétrique : sur I’horizon étudié, les
régimes de volatilité élevée (classe 1) représentent une fraction minoritaire des observations
(de I'ordre d’un tiers), la classe “calme” (0) restant dominante.

Dans ces premieres expériences, on ne modifie pas la fonction de perte pour refléter cet
équilibre : la régression logistique, le MLP et le LSTM sont tous entrainés en minimisant une
log-perte binaire standard (entropie croisée) sur le bloc d’apprentissage, sans pondération
explicite des classes.

Le déséquilibre est pris en compte au niveau de I’évaluation, via des métriques robustes
au déséquilibre via des métriques robustes au déséquilibre, en particulier la balanced
accuracy, le rappel et le F1-score de la classe tendue, ainsi que I'inspection détaillée des
matrices de confusion. L'objectif n’est donc pas de “compenser” le déséquilibre dans la loss,
mais de le rendre explicite dans la lecture des performances.

C) Procédure d’optimisation et critéres d’arrét
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Pour chaque modele, I'entrainement est conduit en minimisant la log-perte pondérée
sur le bloc d’apprentissage, avec sélection des itérations par surveillance de la performance
sur la validation :

. la régression logistique et le MLP sont optimisés via les solveurs standard de
scikit-learn (maximisation de vraisemblance régularisée pour la régression, descente de
gradient stochastique type Adam pour le MLP), avec un nombre maximal d’itérations fixé a
500;

o le LSTM est entrainé sur des mini-batches de séquences (taille de batch 32),
en minimisant la méme log-perte binaire standard, avec I'optimiseur Adam (taux
d’apprentissage 1073). Dans le run de référence, le modéle est entrainé pendant 40 époques
successives ; la log-perte et I'accuracy sont monitorées a chaque epoch sur I’échantillon de
validation, comme illustré par les courbes de la section 4.2. Aucun mécanisme d’early
stopping n’est activé a ce stade : I'objectif est de documenter pleinement la dynamique
d’overfitting du modeéle séquentiel. Dans tous les cas, aucune information du bloc de test
n’est utilisée a ce stade : |le test reste strictement réservé a I’évaluation finale, une fois tous
les hyperparametres fixés.

D) Métriques d’évaluation

L’objectif des modeles n’est pas seulement de maximiser une précision globale, mais
de mesurer finement la capacité a détecter les régimes de volatilité élevée, qui constituent
la classe rare mais économiquement la plus critique. L’évaluation est donc conduite sur
I’échantillon de validation a partir des probabilités prédites ”="“ =11 et des labels
observés ¥ € {01},

Pour un seuil de décision”< ©) , on définit la prédiction binaire

Yy = ﬂ{f)r > T}'

On retient 7= 0.5comme seuil neutre, afin de ne favoriser a priori ni la classe normale ni la
classe tendue.

Sur I’'ensemble des dates de validation Z«, on construit la matrice de confusion :
e TP (true positives) : nombre de dates avec” ~ ' et %=1 ;

e FP(false positives) : % =~ Vet %=1,

e TN (true negatives) : ¥ = et % =0 ;

e FN (false negatives) : ¥~ L et ¥~ 0
A partir de ces quantités, plusieurs métriques complémentaires sont considérées :

Précision globale (accuracy)
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TP+ TN

Acc = )
TP+ TN+ FP+ FN

qui mesure la part d’observations correctement classées. Cette métrique est informative sur
la performance moyenne, mais peut étre trompeuse en présence de déséquilibre de classes.

Sensibilité au régime tendu (rappel de la classe 1)

TP
Iy = o
Recally) = 7p 1 7N

gui quantifie la proportion de régimes de forte volatilité effectivement détectés.
Economiquement, il s’agit de la capacité du modéle a signaler les épisodes de risque élevé.

Spécificité du régime normal (rappel de la classe 0)

TN

My =
Recall) = 7872

gui mesure la capacité a ne pas déclencher de signal de stress lorsque le marché reste dans
un régime de volatilité normalisée.

Balanced accuracy / macro-rappel

Pour neutraliser I'effet du déséquilibre, on suit la moyenne des rappels par classe :

BalAcc = (Rccall(()) + Rccallflj)) .

DN | =

Cette quantité donne a chaque régime le méme poids, indépendamment de sa fréquence
d’apparition.

F1-score sur le régime tendu

Le F1 met I'accent sur la détection correcte de la classe 1 en agrégeant précision et rappel :

Precisi TP P 5 Precision ) - Recall
ecision ;y = ———— =9, ~ O8N
g L= TP+ FP’ (1) Precision ;) + Recall
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Un o élevé indique que le modéle identifie les régimes tendus sans générer trop de faux
signaux.

Qualité probabiliste : log-perte et AUC

Indépendamment du seuil 7, la qualité des probabilités Pt est évaluée via :
la log-perte binaire (déja utilisée comme fonction d’entrainement) sur la validation,

1

m Z [y, log p, + (1 — y,) log(1 —p,) |,

tED

LogLoss = —

qui pénalise fortement les prédictions tres confiantes mais erronées ;

L’aire sous la courbe ROC (AUC), obtenue en faisant varier 7, et en tragant le couple
(taux de faux positifs, taux de vrais positifs). Un AUC proche de 0,5 correspond a un tirage
aléatoire, tandis qu’une valeur nettement supérieure traduit une bonne capacité de ranking
entre régimes calmes et régimes tendus.

En complément, la courbe précision—rappel pour la classe tendue (régime 1),
construite en faisant varier le seuil et en reportant la précision en fonction du rappel. Dans
un contexte de déséquilibre de classes, ce diagnostic met directement en regard la
proportion d’épisodes de forte volatilité effectivement détectés et la quantité de faux
signaux générés.

En pratique, les résultats sont reportés pour un seuil fixe 7 = 0.5, ainsi que sous forme
de courbes ROC et de tableaux de classification. L’analyse comparative entre les trois
modeles (régression logistique, MLP, LSTM) se concentre principalement sur :

. le balanced accuracy et le F1 pour juger la détection des régimes de risque
élevé ;

o la log-perte et I’AUC, pour apprécier la qualité probabiliste des signaux.

Ces métriques fournissent un cadre homogene pour comparer les baselines instantanées et
le modele séquentiel, et pour isoler I'apport propre de la mémoire temporelle dans la
classification des régimes de volatilité.

Enfin, au-dela de ces indicateurs scalaires, I’évaluation s’appuie sur une couche de
diagnostics graphiques et d’expériences dérivées construits a partir des sorties quotidiennes
du pipeline Python (timestamp, prix de cloture, label observé, prédiction discrete,
probabilité 7.). La section 4.4 exploite cette table de diagnostic pour représenter le prix du
BTC coloré par régime observé/prédit, la trajectoire de 7. en regard du prix et du seuil 0,5,
ainsi que les corrélations de Pearson entre 7. et un sous-ensemble de variables explicatives
clefs ; ces figures précisent visuellement ou le modele bascule en régime tendu et quels
drivers dominent ce basculement. La section 4.5 s’appuie sur les mémes métriques
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(balanced accuracy, F1, log-perte, AUC) pour comparer des ablations ciblées du LSTM
(suppression explicite des features de volatilité, réduction de la longueur de séquence) et
quantifier la sensibilité du signal séquentiel a ces briques d’information. Enfin, la section 4.6
projette le signal ».dans un cadre d’allocation simple : une stratégie jouet qui neutralise
I’exposition lorsque 7.dépasse un seuil donné. Son equity et ses indicateurs de risque
(rendement cumulé, volatilité annualisée, drawdown maximal, ratio de Sharpe) sont calculés
de maniére mécanique a partir des rendements quotidiens du BTC pondérés par I’exposition,
puis comparés a un buy-and-hold passif ; I'exercice reste illustratif mais montre comment un
filtre de régime probabiliste peut étre intégré, sans hypotheses supplémentaires, dans des
modeles de contrdle du risque plus complets.

IV Résultats empiriques

4.1 Performances globales des modeéles

Les performances des trois familles de modeles sur I’échantillon de validation sont
résumées dans le Tableau 1. Les métriques sont celles définies en section 3.5 (accuracy,
balanced accuracy, rappel de la classe tendue, F1-score de la classe 1, log-perte et AUC),
calculées avec un seuil de décision fixé a 0,5 sur la probabilité prédite. Les résultats
correspondent au run de référence avec une fenétre séquentielle de 60 jours et 40 époques
d’apprentissage pour le LSTM.

Tableau 1 — Performances des modeéles sur I’échantillon de validation

(seq_len =60, epochs = 40)

Modeéle Accuracy ::‘I:;::ij Recalll()classe F1 (classe 1) ||Log-perte|| AUC

| Logistique | 0,719 | o668 | o514 || 0549 | 0551 | 0750 |
| M || o577 | o587 || o616 | 0492 | 1860 | 0628 |
|LsTM(60j)]| 0535 || o526 | o500 | o416 | 3378 || 0532 |

Sur cet échantillon, la régression logistique s’'impose comme une baseline solide.
Avec une accuracy d’environ 0,72, une balanced accuracy proche de 0,67 et une AUC autour
de 0,75, un classificateur strictement linéaire, appliqué au seul vecteur instantané
d’indicateurs normalisés, parvient déja a séparer de maniere non triviale les régimes de
volatilité “normalisée” et “tendue”. Cela confirme qu’une part significative du signal de
régime est effectivement encodée dans la configuration cross-sectionnelle des features
(rendements récents, volatilité réalisée, écarts aux moyennes mobiles, participation), sans
mobiliser la structure séquentielle.
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Le perceptron multicouche (MLP) ne transforme pas cette base en gain massif de
performance. Malgré sa capacité a modéliser des interactions non linéaires entre
indicateurs, il n"améliore pas substantiellement I’AUC par rapport a la régression logistique
et se dégrade nettement en log-perte. Ce profil est typique d’'un modeéle un peu plus
expressif entrainé sur un volume de données limité : il s’Tadapte davantage a certaines
configurations rares, mais cette flexibilité supplémentaire ne se traduit pas par une
généralisation plus robuste. Dans ce cadre, le MLP joue surtout son rdle de test de richesse
du vecteur de variables : le fait qu’il ne surpasse pas nettement la baseline linéaire suggere
que, a fréquence journaliere, I'essentiel de I'information exploitable sur le régime reste
capturable par une combinaison quasi linéaire des indicateurs.

Le LSTM, enfin, introduit une mémoire explicite sur des séquences de 60 jours. Sur
I’échantillon d’entrainement, le réseau atteint trés rapidement des accuracies proches de 1,
ce qui indique qu’il est parfaitement capable de reconstituer les labels a partir des
trajectoires observées. En validation, en revanche, I'accuracy, la balanced accuracy et 'AUC
retombent a des niveaux voisins de 0,53-0,54, tandis que la log-perte reste élevée. Ce
décalage marqué entre apprentissage et validation est caractéristique d’un sur-
apprentissage séquentiel : la dynamique que le LSTM a apprise sur I’historique
d’entrainement ne se prolonge pas de maniére stable hors-échantillon. Dans le protocole
retenu (données journaliéres, label binaire de volatilité future, architecture LSTM simple),
I'acces a I'historique complet (50 %1) ne se traduit donc pas par un gain systématique par
rapport aux baselines sans mémoire.

Pris ensemble, ces résultats ne remettent pas en cause I’"hypothese d’'une mémoire
de marché, mais en bornent la portée dans ce cadre précis. lls indiquent que, sur Bitcoin et a
cette granularité, une part non négligeable de I'information de régime est déja contenue
dans la photographie instantanée des indicateurs, et que la composante séquentielle
exploitable par un LSTM vanilla reste, au mieux, de faible amplitude. Cette observation
motive la suite du programme de recherche : affiner la définition du label, explorer des
architectures séquentielles plus contraintes et tester des fréquences plus fines, afin de
distinguer ce qui reléve d’une véritable mémoire de régime de ce qui n’est qu’un artefact de
construction de features.

4.2 Courbes d’apprentissage et stabilité de I’optimisation

Pour interpréter les résultats du Tableau 1, il est instructif d’examiner la dynamique
d’apprentissage du modele séquentiel. La Figure 4.2a représente, sous forme de surface,
I’évolution de I'accuracy du LSTM sur I’échantillon d’entrainement et sur la validation au fil
des époques.

Figure 4.2a — Accuracy entrainement / validation du LSTM en fonction des epoch .
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LSTM — train-val surface
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Cette visualisation met en évidence un écart croissant entre les deux séries : la
“créte” rouge correspondant a I'accuracy d’entrainement progresse rapidement au-dela de
0,9, tandis que la partie “validation” de la surface reste nettement plus basse et tend vers un
plateau autour de 0,52-0,55. Autrement dit, le réseau apprend a mémoriser trés
efficacement les séquences vues pendant I’entrainement, mais cette compétence ne se
transpose pas de maniere symétrique hors-échantillon.

La Figure 4.2b détaille ce constat en tracant séparément les courbes d’accuracy
entrainement et validation. La courbe “train” croit quasi monotoniquement de ~0,69 a des
valeurs proches de 1 sur 40 époques, confirmant la capacité du LSTM a reconstituer presque
parfaitement les labels sur I’historique d’apprentissage. A I'inverse, la courbe “val” décroit
progressivement depuis ~0,68 vers ~0,53, avant de se stabiliser dans une bande étroite

autour de ce niveau.

Figure 4.2b — Accuracy entrainement vs validation du LSTM (seq_len = 60, 40 époques)
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LSTM — accuracy entrainement vs validation

1.09 — train

va

Accuracy
O
(o]

o
<

0.5 A

0 5 10 15 20 25 30 35 40
Epoch

Cette divergence entre accuracy entrainement et validation est typique d’un sur-
apprentissage séquentiel : le modele exploite sa forte capacité pour ajuster finement les
trajectoires du jeu d’entrainement, mais la structure temporelle qu’il en déduit n’est pas
suffisamment stable pour généraliser.

Les courbes de log-perte (Figure 4.2c) racontent la méme histoire sous un angle
probabiliste. La log-perte d’entrainement décroit régulierement d’environ 0,6 jusqu’a des
valeurs quasi nulles, signe que le réseau produit des probabilités trés confiantes et
globalement correctes sur les séquences vues. La log-perte de validation suit au contraire
une trajectoire croissante, passant de ~0,6 a plus de 3,3 au fur et a mesure des époques : le
LSTM devient de plus en plus sar de prédictions hors-échantillon qui sont fréquemment
erronées.

Figure 4.2c — Log-perte entrainement vs validation du LSTM (seq_len = 60, 40 epoch
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On observe ainsi un comportement numériquement sain (pas d’explosion de
gradients, pas de divergence de la loss), mais mal régularisé : la complexité du LSTM est
clairement excessive par rapport a la quantité d’information réellement exploitable a cette
granularité journaliere et pour ce label de volatilité future. En pratique, un schéma d’early
stopping couperait I'apprentissage deés les premieres époques, avant que la log-perte de
validation n’ait commencé a se dégrader ; méme dans cette fenétre courte, cependant, le
LSTM ne surpasse pas de facon robuste la régression logistique.
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Pour la régression logistique et le MLP, I'optimisation scikit-learn (non reproduite ici
pour ne pas alourdir la présentation) converge en quelques dizaines, respectivement
guelques centaines d’itérations, avec une log-perte validation monotone décroissante et
sans oscillations marquées. Les difficultés observées sur le modele séquentiel ne
proviennent donc pas d’un probléme d’optimisation, mais d’un mismatch structurel entre la
richesse du LSTM et le signal effectivement présent dans les données a ce niveau de
résolution.

4.3 Diagnostics de classification par régime

Au-dela des scores agrégés du Tableau 1, I'enjeu est de comprendre comment les
modeles se trompent : quelles dates de stress sont effectivement captées, lesquelles sont
manquées, et a quel prix en faux signaux. Cette sous-section explore donc la structure fine
de la classification par régime, en s’appuyant sur les matrices de confusion et sur le
comportement des scores de probabilité lorsqu’on fait varier le seuil de décision.

A) Régression logistique

Figure 4.3a — Matrice de confusion de la régression logistique sur la validation.

Régression logistique — matrice de confusion (validation)
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La matrice de confusion de la régression logistique (Figure 4.3a) confirme son statut
de baseline solide. Sur I’échantillon de validation, le modele identifie 95 épisodes de régime
tendu sur 185, soit un rappel d’environ 51%. En paralléle, il ne déclenche un faux signal de
stress que pour 66 dates sur 371 ou le marché reste en réalité en régime normalisé, ce qui
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correspond a un taux de faux positifs proche de 18%. Autrement dit, le classificateur
parvient a capturer une part significative des épisodes de forte volatilité tout en conservant
un niveau de bruit raisonnable sur la classe calme.

Figure 4.3b — Courbe ROC de la régression logistique.

Régression logistique — courbe ROC (validation)
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La courbe ROC associée (Figure 4.3b) se situe nettement au-dessus de la diagonale
aléatoire. L'aire sous la courbe, AUC ~0,75_, traduit une bonne capacité de ranking
probabiliste : en moyenne, lorsqu’on compare deux dates tirées au hasard, 'une en régime
calme et I'autre en régime tendu, le modeéle attribue une probabilité plus élevée au bon
scénario dans trois cas sur quatre. C’est cohérent avec la bonne balanced accuracy observée
en4.l.

Figure 4.3c — Courbe précision—-rappel (classe 1) de la régression logistique.
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La courbe précision—rappel pour la classe 1 (Figure 4.3c) affine cette lecture. Pour des
seuils élevés, le modele atteint des précisions supérieures a 0,9 au prix d’un rappel plus
faible : on détecte alors uniqguement les épisodes de stress les plus “évidents”. Lorsqu’on
diminue le seuil, le rappel augmente mais la précision décroit progressivement vers des
valeurs proches de 0,5-0,6. Ce compromis est typique d’'un modele bien calibré sur une
classe minoritaire : on dispose d’un curseur explicite permettant d’ajuster la tolérance aux
faux signaux selon I'usage (déclenchement d’alertes de risque, filtrage de régimes pour un
modele de pricing, etc.).

Dans I’ensemble, la régression logistique fournit donc un profil de détection équilibré
: elle ne capture pas tous les épisodes de forte volatilité, mais produit un ranking stable et
controblable, ce qui en fait une référence robuste pour la suite

B) Perceptron multicouche

Figure 4.3d — Matrice de confusion du MLP sur la validation.
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Le perceptron multicouche adopte un comportement sensiblement plus agressif vis-
a-vis de la classe tendue. La matrice de confusion (Figure 4.3d) montre que le MLP identifie
114 régimes 1 sur 185, soit un rappel d’environ 62%, supérieur a celui de la régression
logistique. Ce gain se paie toutefois par une forte augmentation du bruit : le nombre de faux
positifs passe a 164 dates (contre 66 pour la régression logistique), ce qui correspond a un
taux de faux signaux proche de 44 % sur la classe calme. En pratique, cela se traduit par une
forte hausse du taux de faux positifs : le modele déclenche fréquemment des signaux de
stress alors que le marché reste en régime de volatilité normalisée : il alerte davantage, mais
au prix de nombreux épisodes ol le marché reste en réalité dans un régime de volatilité
normalisée.
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Figure 4.3e — Courbe ROC du MLP

MLP — courbe ROC (validation)
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La courbe ROC (Figure 4.3e) reflete cette situation intermédiaire. L’AUC se situe
autour de 0,63, nettement au-dessus du hasard, mais en dega de la régression logistique. Le
MLP est capable de produire un ranking probabiliste non trivial entre régimes, mais cette
hiérarchie est moins nette : pour un méme niveau de rappel, le taux de faux positifs reste
plus élevé.

Figure 4.3f — Courbe précision—-rappel (classe 1) du MLP.
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La courbe précision—rappel de la classe 1 (Figure 4.3f) confirme ce diagnostic. Si la
précision atteint brievement des valeurs proches de 1 pour un rappel quasi nul (seuil
extrémement conservateur), elle décroit rapidement vers des niveaux de I'ordre de 0,4-0,5
lorsque I'on cherche a récupérer une fraction significative des régimes tendus. Le gain de
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rappel par rapport a la régression logistique se fait donc au prix d’'une dégradation marquée
de la précision : le MLP fournit une option “plus sensible” pour détecter des stress, mais sans
amélioration globale du compromis.

D’un point de vue R&D, ce comportement suggere que la capacité non linéaire du
MLP est sous-exploité par rapport a la structure réelle du signal : le modéle parvient a sur-
adapter certaines configurations extrémes, mais ne stabilise pas un ranking probabiliste
meilleur que celui de la baseline linéaire.

C) LST™M

Figure 4.3g — Matrice de confusion du LSTM sur la validation.
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Le LSTM présente un tout autre profil. Sa matrice de confusion (Figure 4.3g) est
presque symétrique : le réseau détecte 90 régimes tendus sur 180 environ, soit un rappel
voisin de 50%, et génére un nombre comparable de faux positifs sur la classe calme (163
dates). La balanced accuracy se retrouve ainsi légerement au-dessus de 0,5, exactement
dans I'ordre de grandeur observé au Tableau 1. Le modele n’échoue pas completement,
mais son pouvoir de discrimination net entre régimes reste tres limité.

Figure 4.3h — Courbe ROC du LSTM
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LSTM — courbe ROC (validation)
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La courbe ROC du LSTM (Figure 4.3h) se situe a peine au-dessus de la diagonale
aléatoire, avec un AUC d’environ 0,53. Cela signifie qu’en moyenne, le réseau n’est guere
meilleur qu’un tirage au sort pour ordonner les dates par probabilité de régime tendu. Ce
constat fait écho aux courbes d’apprentissage de la section 4.2 : le LSTM mémorise
parfaitement I’échantillon d’entrainement, mais la structure temporelle qu’il a captée ne se
traduit pas par un ranking robuste hors-échantillon.

Figure 4.3i — Courbe précision—-rappel (classe 1) du LSTM.
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La courbe précision—rappel (Figure 4.3i) achéve de montrer la faiblesse du signal
exploité. La précision oscille autour de 0,3-0,4 sur une large plage de rappels, sans plateau
clairement dominant. La ou la régression logistique offrait une zone de travail avec une
précision nettement supérieure a 0,6, le LSTM propose un compromis presque indifférencié :
augmenter le rappel ne dégrade plus tellement la précision, tout simplement parce que
I'ensemble du classement est déja tres bruité.

Dans ce cadre expérimental précis (fréquence journaliere, label binaire de volatilité
future, architecture LSTM relativement simple), la mémoire séquentielle captée par le
réseau apparait donc faiblement exploitable pour distinguer durablement les régimes.

D) Lecture croisée

Pris ensemble, ces diagnostics par régime convergent vers une image cohérente avec
la section 4.1 :

. La régression logistique fournit le meilleur équilibre entre détection des
régimes tendus, controle des faux positifs et qualité du ranking probabiliste.

o Le MLP augmente le rappel sur la classe de stress, mais au prix d’un flot de
faux signaux qui dégrade la lisibilité opérationnelle du modele.

. Le LSTM, malgré des courbes d’apprentissage trées flatteuses en entrainement,
n’apporte pas de gain structuré : ses matrices de confusion, ses courbes ROC et précision—
rappel témoignent d’un signal séquentiel encore trop fragile a cette granularité.

Pour la suite du programme de recherche, ces éléments plaident pour un double
mouvement : stabiliser d’abord le signal statique (label, features, calibration) autour de la
baseline logistique, puis n’introduire des architectures séquentielles plus sophistiquées
gu’en présence d’indices plus clairs de mémoire de régime : par exemple a des fréquences
plus fines, sur des labels ajustés ou avec des contraintes de régularisation plus fortes.
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4.4 Structure séquentielle et diagnostics graphiques

Les sections précédentes se concentraient sur des métriques agrégées (accuracy,
AUC, F1, log-perte). Pour apprécier concrétement ce que “voit” le modéle séquentiel, on
examine maintenant la maniére dont le LSTM organise les régimes au fil du temps sur le bloc
de validation. On se focalise ici sur le LSTM, qui est le seul modeéle a disposer d’'une mémoire
explicite sur 60 jours ; les baselines instantanées ne produiraient qu’un signal point-par-
point, sans structure temporelle propre.

La Figure 4.4a superpose le prix quotidien du BTC avec la coloration des régimes
observés (panneau supérieur) et prédits par le LSTM (panneau inférieur).

Figure 4.4a : prix BTC coloré par régime observé / prédit
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Visuellement, les régimes “tendus” observés se concentrent, comme attendu, autour
des phases de volatilité marquée (accélérations haussieres, corrections rapides), tandis que
les périodes de range ou de tendance plus réguliere restent majoritairement en régime
“normalisé”. Le panneau inférieur montre que le LSTM reprend bien ces grands motifs : les
points orange s’agregent sur les mémes zones de pente forte et de retournements, ce qui
indique que le modele réagit aux épisodes de stress. En revanche, la densité de signaux
tendus prédits est nettement plus élevée que dans les labels observés : le LSTM élargit
systématiqguement les plages de régime 1 autour des épisodes de volatilité, ce qui se traduit,
dans les matrices de confusion, par un taux de faux positifs élevé pour la classe tendue.

La Figure 4.4b détaille la trajectoire probabiliste sous-jacente. Elle représente le prix
BTC (axe de gauche) et la probabilité prédite de régime tendu » =" =1l=«): (axe de droite),

avec le seuil neutre 0,5 matérialisé par une ligne en pointillés.

Figure 4.4b : prix et probabilité de régime tendu
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Validation — prix et probabilité de régime tendu (LSTM)
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La probabilité de régime tendu adopte un profil quasi binaire : elle alterne
rapidement entre des niveaux proches de 0 et proches de 1, avec trés peu de valeurs
intermédiaires stables. Ce comportement est cohérent avec les diagnostics de log-perte : le
LSTM devient extrémement confiant sur ses prédictions, mais cette confiance ne généralise
pas bien hors-échantillon, d’ou une log-perte de validation élevée. On retrouve également le
biais déja mis en évidence : sur de longues portions de I’échantillon ?: reste trés souvent au-
dessus de 0,5, ce qui ancre le modele dans un régime “stress” quasi permanent. Le signal
séquentiel capturé par le LSTM est donc réel (les pics de probabilité coincident globalement
avec les épisodes de volatilité), mais il est exploité de facon trop agressive pour produire un
classement probabiliste robuste.

Enfin, la Figure 4.4c cherche a relier ce signal de régime aux variables explicatives
sous-jacentes. Elle montre, sur le bloc de validation, les corrélations de Pearson entre la
probabilité de régime tendu ?: et un sous-ensemble de features clefs, triées par valeur
absolue.

Figure 4.4c : corrélation features / probabilité de régime tendu

Validation — corrélation features / probabilité de régime tendu (LSTM)
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Plusieurs motifs apparaissent clairement. D’une part, des indicateurs de momentum
et de “trend strength” comme macd_hist, macd_signal, ret_10d ou les moyennes mobiles
(ma_20, ma_200) présentent des corrélations marquées avec p_t : les phases de momentum
haussier soutenu (histogramme MACD largement positif, prix au-dessus de la moyenne long
terme) sont associées a des probabilités de stress plus faibles, tandis que les configurations
de momentum dégradé ou de retournement s’accompagnent de p_t élevés. D’autre part, les
mesures de volatilité et de largeur de bande (vol_30d, vol_7d, boll_width) sont, comme
attendu, positivement corrélées a la probabilité de régime tendu : lorsque la dispersion des
rendements et I'amplitude des bandes de Bollinger augmentent, le LSTM tend a basculer en
régime 1. Enfin, des indicateurs de flux et de liquidité comme mfi_14 contribuent également
au signal, en modulant la probabilité de stress en fonction de la pression acheteuse ou
vendeuse.

Ces diagnostics graphiques complétent ainsi les tableaux de performance : ils
montrent que, malgré un sur-apprentissage prononcé et une calibration probabiliste
perfectible, le LSTM exploite bien des patterns séquentiels économiquement plausibles —
alternance de phases de calme et de stress liées a la combinaison de momentum, de
volatilité et de structure de tendance. La question n’est donc pas tant de savoir si une
“mémoire de marché” existe, mais de la contraindre et de la régulariser suffisamment pour
obtenir un signal de régime exploitable a fréquence quotidienne.

4.5 Résultats des ablations

Les expériences précédentes se concentraient sur un LSTM « complet » observant 60
jours d’historique et exploitant I'ensemble des indicateurs décrits en section 2. Cette sous-
section examine, a architecture fixe, 'impact (i) de la suppression explicite des features de
volatilité et (ii) du raccourcissement de la fenétre séquentielle a 15 jours. L'objectif n’est pas
d’optimiser la performance absolue — qui reste inférieure a celle de la régression logistique —
mais de documenter la sensibilité du signal séquentiel aux briques d’information les plus
naturelles : taille de la mémoire et mesure de la dispersion des rendements.

Les trois variantes considérées sont :

o full_60d : LSTM avec toutes les features, séquence de 60 jours ;

o no_vol_60d : mémes features, a I’exception de vol_7d, vol_30d et boll_width,
toujours sur 60 jours ;

o full_15d : LSTM complet mais avec une fenétre raccourcie a 15 jours.

Les métriques de validation correspondantes sont résumées dans le Tableau 2.

‘ Variante HAccuracyHBaIanced accuracyHRecaII (classe 1)HF1 (classe 1)HLog-perteHAUC‘
ful_6od  [0,535 |o,518 0,467 0,399 238  |lo,53]
Ino_vol_60d]|0,586  ||0,544 0,417 lo,400 1,73 |0,60)
full_15d  [0,568 |lo,569 0,574 0,468 229  |lo,58]
Clovis Hilmarcher 47

HilmarCorp — R&D Division



Deux enseignements principaux se dégagent. Premierement, les features de volatilité
ne constituent pas, dans ce protocole, un levier évident de généralisation pour le LSTM. La
variante no_vol_60d améliore I'accuracy (= 0,59) et I’AUC (= 0,60) par rapport au modele
complet sur 60 jours, tout en maintenant un F1 pour la classe tendue du méme ordre de
grandeur. La baisse du rappel sur les régimes tendus (= 0,42 versus = 0,47) indique que le
LSTM sans volatilité devient légerement plus conservateur sur la détection des épisodes de
stress, ce qui est cohérent avec la réduction d’information sur I'ampleur des mouvements.
Le fait que cette ablation n’entraine pas de dégradation catastrophique suggere que la
structure du régime est déja largement intégrée via les indicateurs de tendance, de
momentum et de structure de prix.

Deuxiemement, la profondeur de mémoire joue un réle plus ambigu. Le modele
full_15d — qui n’observe que 15 jours d’historique — atteint la meilleure balanced accuracy (=
0,57) et le meilleur rappel de la classe tendue (= 0,57), au prix d’'un AUC intermédiaire (=
0,58) et d'une log-perte encore élevée. Autrement dit, un horizon plus court semble aider le
LSTM a mieux équilibrer les deux régimes en fréquence, et a capter davantage d’épisodes de
forte volatilité, mais sans pour autant produire un ranking probabiliste plus robuste. Cette
sensibilité a la longueur de séquence est cohérente avec la structure des clusters de
volatilité observés empiriquement (section 3.3) : une fenétre trés longue (60 jours) mélange
potentiellement plusieurs micro-régimes et renforce le risque d’overfitting séquentiel, tandis
gu’une fenétre plus courte réagit davantage aux configurations locales.

Dans tous les cas, aucune de ces variantes n’égale la régression logistique en termes
d’AUC ou de log-perte. Les ablations doivent donc étre lues comme des diagnostics internes
: elles montrent que le comportement du LSTM est effectivement modulé par la présence
explicite de la volatilité et par la profondeur de mémoire, mais qu’a cette granularité
journaliere la “mémoire de marché” capturable par un LSTM vanilla reste faible, et nécessite
des architectures plus contraintes ou des labels plus ciblés pour devenir exploitable.

4.6 lllustration d’usage : stratégie de filtrage de risque

Pour illustrer de facon concréte ce que I'on peut faire avec le signal de régime
P =P, =117 jssu du LSTM, on construit une stratégie jouet de filtrage de risque sur le
bloc de validation. L'idée est volontairement minimale : lorsque la probabilité de régime
tendu dépasse un certain seuil, I'allocation se replie en cash ; sinon, elle reste entierement
investie en BTC.

Soit I le prix de cléture et

le rendement simple quotidien. On définit une exposition binaire
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avec un seuil neutre 7= 0,5, cohérent avec la régle de décision binaire utilisée dans les
sections précédentes. La trajectoire d’equity de la stratégie filtrée s’écrit alors

t
Ezfﬂt (T) = E() H (1 + C‘u(’r) Tu. )’
u=1
tandis que le buy—and—hold passif correspond au cas “ = .,

t
EM = E, H(l +7y)-

u=1

Figure 4.6 : Toy Vs Buy and hold
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La Figure 4.6 montre I'equity normalisée de ces deux stratégies sur le bloc de
validation. Visuellement, la courbe filtrée suit le profil général du marché, mais avec des
phases de plateau lorsque le modeéle anticipe un régime tendu et coupe I'exposition.

Pour quantifier cette illustration, on calcule sur les rendements quotidiens correspondants :

. le rendement cumulé CW-return = Er/Ey —1 .

. la volatilité annualisée volenmual = V365 o(r) (fréquence quotidienne) ;
. in (B, / max E, 1) :

. le maximum drawdown, © , sans taux sans risque.
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Les résultats sont récapitulés dans le Tableau 3.

Tableau 3 - Statistiques de la stratégie jouet de filtrage de risque (bloc de validation)

‘ Stratégie chm_return"vol_annuaIHmax_drawdown"Sharpe‘
| Buy&hold | 06615 || 04545 | 02810 |0,9749|
[Stratégie filtrée LSTM| 0,539 | 0,3387 | -0,2506 |j0,4517|

Sur cette fenétre, la stratégie filtrée réduit effectivement la volatilité et le drawdown par
rapport au buy—and—hold, mais au prix d’'un rendement cumulé nettement inférieur et d’un
Sharpe divisé par plus de deux. Autrement dit, le signal de régime fourni par le LSTM permet
déja de produire une trajectoire d’equity plus lissée, mais il n’est pas, en I'état, suffisamment
propre ni bien calibré pour améliorer le couple rendement/risque de maniére robuste.

Cet exercice doit donc étre lu comme une illustration méthodologique, et non
comme un backtest opérationnel : le seuil "n’est pas optimisé, les colts de transaction sont
négligés, et aucune contrainte d’implémentation réelle n’est prise en compte. Il montre
néanmoins comment un signal de régime 7 peut étre encapsulé dans une regle d’allocation
simple de type « long/cash », et préfigure I'usage cible de ce type de modéle : servir de
brique de filtrage du risque dans des stratégies d’allocation plus complétes (multi-actifs,
multi-horizons), ou le signal de régime viendrait moduler I'exposition globale plutét que
générer seul des décisions de trading.

V Discussion et limites

5.1 Lecture critique des résultats empiriqgues

Les résultats empiriques obtenus dans cette premiére itération confirment qu’une
partie significative de la dynamique de régime sur Bitcoin peut déja étre capturée par des
modéles statiques relativement simples. A protocole expérimental constant méme vecteur
de features, méme définition du label de régime, méme découpage temporel la régression
logistique s'impose comme référence de base. La frontiere linéaire qu’elle apprend,
appliquée a l'instantané des indicateurs techniques, parvient a séparer de maniére robuste
les phases de volatilité future “normalisée” des épisodes plus tendus, avec une combinaison
équilibrée d’accuracy globale, de balanced accuracy et d’AUC. Autrement dit, la simple
structure affine dans I'espace des features organise déja le marché en deux régimes
économiquement lisibles.

Le perceptron multicouche n’apporte qu’un bénéfice marginal. La non-linéarité
supplémentaire permet certes de rehausser ponctuellement le rappel sur la classe de stress,
mais au prix d’'une dégradation de la calibration probabiliste et d’'une augmentation sensible
des faux signaux. Le compromis global reste moins favorable que celui de la régression

Clovis Hilmarcher 50
HilmarCorp — R&D Division



logistique, ce qui suggére que, dans ce cadre précis, le gain d’expressivité ne compense pas
le colt de variance ajoutée par I’architecture.

Le LSTM, congu pour exploiter explicitement 60 jours d’historique, met en évidence
un phénomene différent. Sur I’échantillon d’entrainement, le modéle converge vers une
quasi-reconstruction parfaite des labels, avec une log-perte tres faible et des probabilités
extrémes proches de 0 ou 1. Sur le bloc de validation, cette confiance se retourne en fragilité
: "'accuracy et la balanced accuracy se rapprochent d’un niveau a peine supérieur au hasard,
I’AUC recule nettement et la log-perte augmente de maniere significative. Les diagnostics
graphiques confirment ce diagnostic : la probabilité de régime tendu?.adopte un profil quasi
binaire, basculant violemment entre les deux extrémes, et reste durablement ancrée au-
dessus du seuil 0,5 sur de longues périodes. Les épisodes de volatilité marquée sont bien
détectés, mais le modele tend ensuite a étendre exagérément la zone de stress, ce qui se
traduit mécaniquement par un exces de faux positifs dans les matrices de confusion.

Les expériences d’ablation réalisées a architecture constante apportent un éclairage
complémentaire. La suppression des features directement liées a la volatilité ne provoque
pas d’effondrement du LSTM ; au contraire, certaines métriques hors-échantillon
s’améliorent légerement, en particulier I'accuracy et ’AUC, méme si le signal de stress
devient un peu plus conservateur. Cela laisse penser que la structure de régime est déja
largement encodée dans les indicateurs de tendance, de momentum et de structure de prix,
et que les proxies de volatilité, dans ce paramétrage initial, n"apportent qu’un gain
d’information marginal. De méme, le raccourcissement de la séquence a quinze jours
améliore la balanced accuracy et le rappel de la classe tendue, sans pour autant rattraper la
régression logistique en termes de qualité probabiliste. Une fenétre plus courte semble donc
permettre au LSTM de mieux suivre les configurations locales de marché, mais sans lui
donner encore un véritable avantage structurel sur les baselines statiques.

Enfin, la stratégie de filtrage de risque construite a partir de 7 joue pleinement son
réle d’illustration. Sur le segment de validation, la trajectoire d’equity filtrée, qui réduit
I’exposition des que la probabilité de régime tendu dépasse un seuil neutre, présente une
volatilité et un drawdown maximal plus contenus que le buy-and-hold, mais au prix d’un
rendement cumulé nettement inférieur. Dans la configuration actuelle, le signal de régime
agit donc davantage comme un dispositif de freinage capable de couper une partie des
extrémités de distribution que comme un moteur d’amélioration du couple
rendement/risque. Cet exercice doit étre lu comme une preuve de concept : il montre que le
signal peut étre injecté dans une logique de controle du risque, mais ne constitue pas, en
I’état, un overlay prét pour une mise en production.

5.2 Portée et limites du cadre expérimental

Le cadre expérimental retenu dans cette premiére note est volontairement restrictif
et explique en partie la hiérarchie observée entre modeéles. La granularité temporelle,
d’abord, est exclusivement journaliere. Le label de régime est défini a partir de la volatilité
réalisée future sur un horizon court, mais toute la micro-dynamique intraday —la ou se
cristallisent souvent les transitions de régime, les séquences de liquidations et les chocs de
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liquidité — est, par construction, absente. Dans ce contexte, I'avantage informationnel d’un
modele séquentiel est mécaniquement limité : la mémoire qu’il peut exploiter n’est qu’une
mémoire d’“états journaliers déja agrégés”.

L'univers d’actifs est, ensuite, réduit au seul BTC spot. Si Bitcoin constitue un
laboratoire naturel pour ce type d’exercice, il ne représente ni la diversité des profils de
risque des autres cryptoactifs, ni les interactions de régimes entre actifs liés (ETH, indices de
marché, produits dérivés). Il n’est donc pas possible, a ce stade, de conclure sur la
transférabilité du signal de régime a un univers multi-actifs, ni sur son comportement dans
des portefeuilles réellement diversifiés.

Le vecteur de features repose essentiellement sur des constructions issues des prix et
des volumes : rendements multi-horizons, indicateurs de momentum, mesures de tendance,
volatilités réalisées et largeurs de bandes, proxies de participation via volumes relatifs et
MFI. Les dimensions on-chain, dérivées (basis futures, funding, skew d’options) ou macro-
financieres ne sont pas encore intégrées ; de méme, aucune information de carnet d’ordres
ou de microstructure n’est utilisée. Le modele apprend donc un régime au sens strict de
“régime de prix”, sans vision directe de la structure de flux ou des contraintes de
financement qui peuvent, en pratique, déclencher ou prolonger des phases de stress.

Le choix du label de régime constitue une autre simplification importante. La
dichotomie “calme / tendu” dérivée d’un ratio de volatilité future sur une volatilité de
référence offre une grille de lecture claire, mais unidimensionnelle. Elle ne distingue pas les
épisodes de stress haussier des chocs baissiers, ne tient pas compte de la profondeur des
drawdowns, ni des propriétés de récupération post-crise. Plusieurs configurations de marché
tres différentes peuvent étre agrégées dans la méme classe de régime, ce qui limite
mécaniquement la quantité d’information exploitable par les modeles.

Enfin, I'architecture séquentielle elle-méme reste minimaliste. Le LSTM utilisé est
volontairement simple, avec une seule couche, un nombre d’unités maitrisé, et sans recours
a des mécanismes de régularisation avancés (dropout, pénalisation spécifique des poids
récurrents, calibrations ex-post des probabilités). L’évaluation hors-échantillon repose sur un
unique split chronologique et ne met pas encore en ceuvre de schémas de validation croisée
temporelle plus sophistiqués. Quant a la stratégie de filtrage de risque, elle est
volontairement nette exposition binaire, absence de frais de transaction, absence de
contraintes de turnover afin de rester lisible. L'ensemble de ces choix sont adaptés a une
premiere exploration, mais constituent autant de points de vigilance lorsqu’il s’agit
d’interpréter la portée des résultats.

5.3 Pistes de développement et intégration produit

Dans cette perspective, les résultats présentés ici doivent étre lus comme un jalon de
recherche plutot que comme un aboutissement. Ils confirment d’abord que, a fréquence
quotidienne et pour un label de volatilité simple, la majeure partie du signal exploitable sur
les régimes de marché est déja accessible a des modeles statiques bien spécifiés. Ils valident
ensuite I'existence d’'une mémoire séquentielle non triviale les diagnostics graphiques du
LSTM montrent clairement que certaines configurations de trajectoires sont associées a des
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profils de risque différenciés mais soulignent qu’une architecture vanilla, peu régularisée,
n’est pas suffisante pour transformer cette mémoire en avantage probabiliste robuste.

Les prochains développements s’orienteront donc dans deux directions
complémentaires. Sur le plan méthodologique, I'enjeu est d’enrichir simultanément le label
de régime, le vecteur de features et les architectures séquentielles, de maniére a mieux
aligner la définition du probleme de prédiction avec les besoins d’'un moteur d’allocation
réel. Cela implique d’explorer des labels multi-niveaux (par exemple en intégrant
explicitement la dimension de drawdown ou des horizons de risque différenciés), d’ouvrir le
jeu de données a des signaux on-chain, dérivés et macro, et de tester des modeles plus
structurés architectures convolutives temporelles, mécanismes d’attention, modeles a
changement de régime explicite avec des protocoles de régularisation et de validation
croisée adaptés a la faible fréquence des observations.

Sur le plan “produit”, I'objectif est de transformer le signal de régime en véritable
brique de gestion. La stratégie jouet de filtrage présentée en section 4.6 fournit un canevas
naturel pour développer des overlays plus réalistes : expositions graduelles plutét que
binaires, intégration de colts de transaction, cibles de volatilité explicites, contraintes de
drawdown, interaction avec d’autres moteurs d’alpha directionnels ou relatifs. A terme,
I’ambition est que ce type de modele de régime ne soit plus uniguement un objet de
recherche isolé, mais qu’il alimente un bloc de contréle du risque au sein d’une architecture
plus large d’allocation systématique, ou chaque moteur : tendance, carry, signaux on-chain,
facteurs macro dialogue avec une estimation cohérente de I'état de marché.

Dans cette optique, la présente note joue pleinement son réle : elle établit une
baseline quantitative robuste, met en évidence les limites des approches séquentielles
naives et trace un chemin clair vers les itérations suivantes du programme de R&D.

Conclusion

Cette premiere série d’expérimentations séquentielles sur le Bitcoin avait un objectif
volontairement circonscrit : tester, sur un cadre simple mais propre, I’existence d’une
mémoire exploitable dans I'enchainement des régimes de volatilité. A partir d’un label
binaire fondé sur la volatilité réalisée future, d’'un jeu compact d’indicateurs techniques
normalisés et d’'un protocole d’entrainement strictement causal, trois familles de modeles
ont été mises en regard : une régression logistique, un MLP sans mémoire et un LSTM
observant 60 jours d’historique. Les résultats empiriques sont sans ambiguité : dans ce cadre
précis, la baseline linéaire surperforme systématiquement les architectures plus expressives
en termes d’AUC et de log-perte, tandis que le LSTM sur-apprend rapidement et ne parvient
pas a transformer son acces a I’historique en gain robuste hors-échantillon.

Ce constat ne remet pas en cause I’hypothése d’une organisation du marché en
régimes, mais en borne la portée a cette granularité. A fréquence journaliére, une part
significative de I'information de régime semble déja contenue dans la configuration
instantanée des indicateurs (rendements multi-horizons, volatilité réalisée, écarts aux
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moyennes mobiles, proxies de participation) ; la composante proprement séquentielle, telle
qgu’un LSTM vanilla peut I'exploiter sur 15 a 60 jours, apparait de faible amplitude et tres
sensible au sur-apprentissage. Les ablations menées sur la longueur de séquence et sur les
features de volatilité confirment ce diagnostic : le comportement du LSTM est bien modulé
par ces briques d’information, mais aucun réglage simple ne permet de franchir de maniere
stable le plafond fixé par la régression logistique.

Pour autant, I'exercice n’est pas négatif ; il est structurant. La note a permis (i) de
poser un pipeline de données et de features entierement reproductible, (ii) de définir un
label de régime explicite, ancré dans la volatilité réalisée future plutot que dans des
heuristiques ad hoc, (iii) de comparer de facon homogéne des modeles avec et sans
mémoire, et (iv) de documenter la structure séquentielle du signal de régime via des
diagnostics graphiques et une stratégie jouet de filtrage de risque. L'ensemble fournit une
base empirique claire : il existe bien un signal de régime exploitable sur BTC au quotidien,
mais ce signal est essentiellement “statique” dans ce cadre, et ne justifie pas encore I'usage
d’architectures séquentielles complexes en production.

Les limites du dispositif sont, en miroir, tout aussi claires : un seul actif (BTC), une
fréquence daily, un label binaire de volatilité future relativement simple, une architecture
LSTM volontairement minimale et I'absence de backtests pleinement opérationnels
intégrant frictions et contraintes d’allocation. Ces choix étaient assumés pour cette V1, afin
de privilégier la lisibilité du protocole et la tragabilité des résultats ; ils fixent désormais la
feuille de route des itérations suivantes.

La suite du programme de recherche s’organise donc naturellement autour de trois
axes. Sur le plan des données et des labels, il s’agira d’explorer des définitions plus riches de
régime (multi-classe, vol cible, drawdown anticipé, régimes conjoints prix/volume), de tester
des fréquences plus fines (intra-day) et d’étendre I’analyse a un panier d’actifs liquides. Sur
le plan des modeles, les efforts porteront sur des architectures séquentielles plus
contraintes et mieux régularisées, calibrées en priorité a partir de la baseline logistique.
Enfin, sur le plan “produit”, le signal de régime sera progressivement intégré, non comme
moteur unique de décision, mais comme couche de filtrage de risque et de contrédle
d’exposition dans des moteurs d’allocation plus complets.

En ce sens, cette note joue bien son r6le : non pas proposer un modele séquentiel
“clé en main” pour le trading sur Bitcoin, mais clarifier ce que la donnée raconte réellement
sur la mémoire de marché a cette échelle, et tracer un chemin réaliste vers des briques de
régimes utilisables dans les futurs moteurs d’allocation de HilmarCorp.
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