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Introduction 
 

En janvier 2025, la HilmarCorp R&D Division a conduit une première série 
d’expérimentations séquentielles sur le Bitcoin, dans le cadre de ses travaux sur la mémoire 
de marché et les régimes de volatilité. L’objectif était de documenter, sur un actif unique 
mais liquide, l’existence éventuelle de dépendances temporelles dans l’enchaînement des 
états de volatilité, et d’évaluer dans quelle mesure ces régimes peuvent être modélisés de 
façon exploitable pour des briques futures de filtrage du risque et de risk overlay. 

Ce travail s’inscrit dans la continuité de la littérature sur les propriétés “non i.i.d.” des 
marchés financiers. Depuis les premiers résultats empiriques sur le volatility clustering 
(périodes de calme et d’agitation qui se succèdent par paquets) et les modèles de type 
GARCH, jusqu’aux modèles à changements de régime ou Hidden Markov Models appliqués 
aux actions, indices ou taux, de nombreux travaux ont montré que la volatilité suit des 
dynamiques de régimes plutôt qu’un bruit blanc homogène. La présente note reprend cette 
intuition dans un cadre volontairement restreint : un seul actif (BTC), à fréquence 
journalière, avec un label binaire de régime de volatilité et des architectures relativement 
simples, afin de mesurer de manière contrôlée ce que “voit” réellement un modèle 
séquentiel sur ce type de données. 

Plus précisément, on cherche ici à répondre à une question opérationnelle : sur 
Bitcoin, entre 2017 et 2025, une architecture de type LSTM (Long Short-Term Memory) 
disposant d’un historique de 60 jours apporte-t-elle, pour la classification de régimes de 
volatilité future, un signal supplémentaire par rapport à des modèles instantanés sans 
mémoire (régression logistique, perceptron multicouche) appliqués au vecteur d’indicateurs 
à la date t ? Autrement dit, existe-t-il, à cette granularité, une mémoire de régime 
exploitable au-delà de la simple “photographie” des indicateurs techniques normalisés 
(rendements récents, volatilité réalisée, écarts aux moyennes, volume et participation) ? 

Pour isoler cette contribution séquentielle, les modèles sont entraînés sur des 
données journalières de BTC couvrant la période 2017–2025, enrichies d’un ensemble 
cohérent d’indicateurs techniques et normalisées de manière strictement causale. Deux 
baselines non séquentielles : une régression logistique régularisée et un MLP peu profond 
fournissent un point de comparaison direct pour juger de l’apport (ou non) du LSTM en 
termes de classification de régimes, de qualité probabiliste (log-perte, AUC) et de diagnostics 
de risque (matrices de confusion, courbes ROC, précision–rappel). 

Les sections suivantes présentent d’abord la construction du label de régime et des 
features (Section 2), puis le protocole expérimental et les métriques d’évaluation (Section 3). 
La Section 4 discute les résultats empiriques obtenus sur les baselines et le LSTM, en incluant 
diagnostics graphiques, études d’ablation et un exemple illustratif de filtrage de risque. 
Enfin, la Section 5 propose une lecture critique des résultats, discute la portée du cadre 
expérimental et esquisse des pistes de V2, avant de conclure sur le positionnement de ces 
travaux dans le programme de recherche de HilmarCorp. 
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I Données et préparation 
 
  
1.1 Sources des données 
 

L’expérimentation s’appuie sur des données de marché quotidiennes du Bitcoin, 
couvrant la période du 17 août 2017 au 10 novembre 2025. Cet horizon a été choisi de 
manière à inclure plusieurs cycles complets du marché crypto : bull, bear et phases latérales 
offrant ainsi un cadre idéal pour étudier la persistance ou la rupture des régimes 
comportementaux. 
 

Les données ont été collectées directement via l’API officielle de Binance, principal 
marché spot du Bitcoin depuis 2017. Ce choix s’explique par la profondeur de son carnet 
d’ordres, la continuité historique de ses cotations et la granularité horaire des informations 
disponibles, qui en font une source de référence pour les travaux quantitatifs sur le BTC. 
L’utilisation de l’API, plutôt que de fichiers agrégés tiers, garantit une traçabilité intégrale du 
pipeline de collecte et la reproductibilité complète des résultats, conformément aux 
standards de recherche de HilmarCorp R&D Division. 
 
Chaque observation journalière issue de l’API comprend : 
 
 • le prix d’ouverture (open), 
 • le prix le plus haut (high), 
 • le prix le plus bas (low), 
 • le prix de clôture (close), 
 • le volume total échangé sur la journée, exprimé en BTC, 
 • ainsi qu’un horodatage précis en fuseau UTC. 
 

Les séries ont ensuite été réindexées sur un calendrier civil continu, assurant une 
progression temporelle uniforme et la préservation des séquences. 
Aucune interpolation n’a été appliquée : les journées absentes ont été explicitement 
conservées comme manquantes afin de ne pas altérer la dépendance temporelle du signal. 
Les volumes extrêmes, souvent liés à des consolidations API ou des anomalies de carnet, ont 
été détectés par contrôle inter-quantile symétrique (±3σ) et ajustés sans lissage des prix. 
 

L’ensemble des données brutes ainsi nettoyées : prix, volumes et métadonnées 
temporelles constitue la base empirique des expérimentations séquentielles menées dans 
cette étude. C’est à partir de cette fondation que seront ensuite dérivés les indicateurs 
techniques et les régimes de marché nécessaires à l’analyse de la mémoire temporelle grâce 
à un modèle séquentiel. 

II Indicateurs dérivés (Feature Engineering) 
 
 2.1 contexte 
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Pour analyser la mémoire potentielle du marché et préparer l’entraînement d’un 

modèle séquentiel, il est nécessaire de disposer d’un ensemble d’indicateurs capables de 
capturer les dimensions essentielles du comportement du Bitcoin. L’objectif n’est pas 
d’optimiser un vecteur de features, mais de constituer un espace de variables cohérent, 
économiquement interprétable et suffisamment riche pour permettre au modèle de 
détecter d’éventuelles dépendances temporelles. 
 

Dans cette étude, nous retenons un ensemble réduit mais représentatif d’indicateurs 
dérivés des séries OHLCV journalières. Ils couvrent quatre grandes dimensions du marché : 
 • Direction et Momentum : rendements logarithmiques multi-horizons, 
oscillateurs mesurant la persistance locale du mouvement ; 
 • Structure de tendance : moyennes mobiles relatives, indicateurs d’orientation 
(MACD) et de force directionnelle (ADX, DI⁺/DI⁻) ; 
 • Volatilité et compression : volatilité réalisée, largeur normalisée des bandes 
de Bollinger ; 
 • Participation : volumes relatifs, flux monétaires (MFI) et structure des 
chandeliers. 
 

Ces indicateurs ne sont pas utilisés comme outils décisionnels, mais comme proxies 
standardisés d’états de marché, permettant de tester si un modèle séquentiel est capable 
d’en extraire une structure temporelle cohérente. L’enjeu de cette première 
expérimentation n’est pas la performance prédictive, mais la mise en évidence, ou non 
d’une forme de mémoire dans l’évolution des régimes de volatilité et de tendance. 
 

En travaillant sur données journalières, l’ambition est de capturer des signaux persistants 
plutôt que des fluctuations micro-structurelles. Les features retenues sont construites de 
manière causale, normalisées et alignées temporellement, de manière à fournir un espace 
d’entrée propre au réseau LSTM et adapté à l’étude de la continuité et des transitions de 
régimes. 

 

2.2 Indicateur technique 

2.2.1 Direction  

La dimension « Direction » regroupe les variables utilisées pour caractériser 
l’évolution immédiate du prix et la persistance locale du mouvement. Les rendements multi-
horizons mesurent l’amplitude et la continuité du déplacement du prix sur différentes 
fenêtres temporelles, tandis que les oscillateurs de momentum décrivent l’intensité relative 
des gains et des pertes dans le court terme. Ces mesures ne visent pas à formuler une 
prévision directionnelle, mais à fournir une représentation normalisée des dynamiques 
élémentaires nécessaires à l’analyse séquentielle des régimes de marché. 
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A) Rendements multi-horizons (1, 5, 10, 30 jours) 

Pour un prix de clôture  nous utilisons les rendements logarithmiques : additifs dans le 
temps et statistiquement plus stables sur longues fenêtres : 

 

En complément, nous suivons le positionnement relatif du prix sur sa moyenne 
mobile 30 jours : 

 

 

Implémentation utilisée : 

 

 

B) Momentum local (RSI, Stochastique, MACD) 
 

Les indicateurs de Momentum quantifient la vitesse et l’essoufflement du mouvement 
dans le court terme. Ils permettent d’identifier les phases d’accélération, les retournements 
progressifs et les situations d’excès par rapport au comportement récent du prix. Dans une 
perspective séquentielle, ces oscillateurs fournissent des signaux normalisés sur la 
dominance acheteuse ou vendeuse instantanée et constituent un complément naturel aux 
rendements multi-horizons pour décrire la dynamique locale de marché. 

B.1 RSI(14) 

Le RSI mesure le ratio des gains/pertes lissés sur 14 jours (lissage de Wilder) ; borné 
entre 0 et 100, il sert de proxy normalisé du Momentum court terme : des excursions 
prolongées au-dessus (ou au-dessous) de 50 signalent la domination des gains (ou des 
pertes) et renseignent sur le régime : tendance ou retour à la moyenne. 
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Où 

 

 

Implémentation utilisée : 

 

 

B.2 Stochastique %K / %D (14, 3) 

Le stochastique positionne la clôture dans le range récent ; borné entre 0 et 100, il 
sert de proxy de pression relative : des séjours prolongés en zone haute (ou basse) signalent 
une domination acheteuse (ou vendeuse) et renseignent sur tendance, cassure ou marché 
en range. 

  

Avec 

 

 

Implémentation utilisée : 

 

 

B.3 MACD (12, 26, 9) 

Le MACD compare deux moyennes mobiles exponentielles du prix : une rapide, très 
réactive aux variations récentes, et une lente, qui reflète la tendance de fond. Leur écart est 
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ensuite lissé par une ligne signal ; l’histogramme visualise ce différentiel : il s’étire quand le 
momentum accélère, se contracte ou bascule sous zéro quand le mouvement s’essouffle ou 
inverse. 

 

Implémentation utilisée : 

 

 

2.2.2 Structure de tendance 

La structure de tendance regroupe les indicateurs visant à mesurer l’orientation 
générale du marché et la force relative des mouvements. Contrairement aux oscillateurs de 
momentum, centrés sur les fluctuations locales, ces mesures s’intéressent à la cohérence 
d’un mouvement prolongé et à son degré d’organisation. Elles permettent de distinguer les 
phases de tendance établie, les périodes de consolidation et les situations de marché en 
range, éléments essentiels dans un cadre d’analyse séquentielle. 

 

A) Moyennes mobiles (écarts normalisés 10, 20, 50, 200 jours) 
 

Les moyennes mobiles servent ici à mesurer le niveau de portage du prix par rapport 
à sa tendance de fond. Plutôt que d’utiliser les niveaux bruts, nous suivons l’écart relatif du 
prix de clôture  à sa moyenne mobile simple sur n jours, ce qui fournit une mesure plus 
stationnaire et moins redondante avec le prix. 

Pour une moyenne mobile simple sur n jours : 

 

 
l’écart normalisé est défini par : 
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Un  durablement positif traduit un portage haussier (prix au-dessus de sa 
moyenne), tandis qu’un négatif et persistant indique un biais baissier. 

 

Implémentation utilisée : 

 

 

B) CCI(20) 

Le Commodity Channel Index mesure l’écart normalisé du prix typique à sa moyenne 
récente. Il sert ici à détecter les phases de sur- / sous-extension autour d’un régime de 
tendance : des valeurs élevées (ou très basses) et persistantes signalent un mouvement 
organisé, tandis que les retours rapides vers la zone neutre traduisent plutôt un 
rééquilibrage. 

On définit d’abord le prix typique : 
 

 
 

Puis la moyenne mobile simple et la déviation moyenne sur 20 jours : 

 

Le CCI(20) est alors donné par : 

 

Des niveaux extrêmes et durables de  indiquent une extension marquée du prix 
par rapport à son équilibre local, utile pour qualifier l’état du trend (mature, en extension, 
en normalisation). 
 
Implémentation utilisée : 
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C) ADX(14), DI⁺, DI⁻ 

L’ Average Directional Index (ADX) mesure la force d’une tendance, indépendamment 
de son sens, tandis que  et  en décrivent l’orientation. Ensemble, ils permettent de 
distinguer les phases de trend organisé des périodes de marché en range/chop, point crucial 
pour un modèle séquentiel. 

 
On part des mouvements directionnels positifs et négatifs : 
 

 
 
et de la True Range : 

 

Après lissage de type Wilder sur 14 jours, on définit : 
 

 

• Un ADX élevé indique un mouvement structuré (haussier si > , baissier sinon). 
• Un ADX faible signale un marché peu directionnel, où la volatilité est moins “portée” 

par un trend. 

Dans notre cadre, ces variables servent à distinguer les segments où la mémoire séquentielle 
porte un trend clair de ceux où le marché oscille autour d’un équilibre local. 
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Implémentation utilisée :  
 

 

2.2.3 Volatilité et compression  

La volatilité et la compression de prix décrivent l’amplitude des 
mouvements et la façon dont l’incertitude se concentre ou se détend dans le 
temps. Là où la structure de tendance s’intéresse à la direction du mouvement, 
ces indicateurs capturent l’intensité du risque porté par chaque régime. Ils 
permettent d’identifier les phases de volatilité élevée et persistante, les 
épisodes de contraction (“volatility squeeze”) et les transitions entre régimes 
calmes et stressés, éléments clés pour un modèle séquentiel. 

 

A) Volatilité réalisée (7, 30 jours) 

La volatilité réalisée mesure la dispersion observée des rendements sur une fenêtre 
glissante. Elle fournit une estimation non paramétrique du risque effectif porté par le 
marché, en agrégeant les chocs de prix récents. 

À partir des rendements logarithmiques journaliers 

 

La volatilité réalisée sur k jours est définie par : 

 

Où  désigne la moyenne des rendements sur la même fenêtre. 
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Dans cette étude,  capture la volatilité courte, sensible aux chocs récents, tandis 
que  décrit le niveau de risque de fond du régime courant. 
 

Implémentation utilisée : 

 

 

B) Bandes de Bollinger : largeur normalisée 

Les bandes de Bollinger quantifient la dispersion du prix autour de sa moyenne 
mobile, en combinant information de tendance et de volatilité. Dans notre cas, nous 
retenons uniquement la largeur relative des bandes, utilisée comme proxy de compression / 
expansion du marché. 

Pour une moyenne mobile  et un écart-type  sur 20 jours, les bandes 
classiques s’écrivent : 

 
 
Nous suivons la largeur normalisée : 
 

 
 

qui mesure l’ouverture relative du “canal” de prix. 

 Un  faible indique une phase de compression (range étroit, volatilité contenue), 
souvent associée à des régimes calmes ou à des phases de pré-rupture. À l’inverse, un  
durablement élevé traduit une expansion de volatilité, typique des régimes directionnels 
intenses ou des épisodes de stress.  

Implémentation utilisée : 
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2.2.4 Participation  

La participation de marché regroupe les indicateurs liés aux flux échangés et à la 
micro-structure des chandeliers. Là où la direction et la tendance décrivent le mouvement 
du prix, ces mesures renseignent sur l’intensité des échanges et la façon dont le prix se 
forme à l’intérieur de chaque séance. Elles sont particulièrement utiles pour distinguer les 
phases de marché “portées” par un flux significatif de celles où les variations de prix se 
produisent sur des volumes faibles ou déséquilibrés. 
 
 

A) Volume relatif 20 jours 

Le volume relatif à 20 jours mesure l’intensité des échanges du jour par rapport à un 
niveau de référence récent. Il sert ici de proxy simple de “sur-activité” ou de “désert de 
liquidité”, deux configurations souvent associées à des transitions de régime ou à des phases 
de capitulation/exubérance. 

On définit d’abord la moyenne mobile simple des volumes sur 20 jours : 

 

puis le volume relatif : 

 

Un  signale une séance anormalement active, tandis qu’une valeur 
durablement inférieure à 1 traduit un environnement de liquidité réduite. Ce type 
d’information permet d’identifier les phases de marché marquées par un afflux ou un retrait 
de participation, souvent associées aux changements d’équilibre entre acheteurs et 
vendeurs. 

Implémentation utilisée : 

 

 

B)  Money Flow Index (MFI 14) 

Le Money Flow Index combine prix et volume pour estimer la pression d’achat ou de 
vente sur une fenêtre donnée. Contrairement à un volume brut, il pondère les échanges par 
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la direction des mouvements de prix, ce qui en fait un proxy de “flux directionnel” plutôt que 
de simple activité. 

Le MFI sur 14 jours est calculé à partir du prix typique  (moyenne de  et   ) des 
volumes et des flux monétaires positifs/négatifs. Il est borné entre 0 et 100 : 

• des valeurs élevées et persistantes indiquent une pression acheteuse dominante ; 
• des valeurs faibles signalent une pression vendeuse prolongée. 

Le  renseigne ainsi sur l’intensité directionnelle sous-jacente aux mouvements 
observés : il met en évidence les phases où les flux monétaires soutiennent une tendance, 
ainsi que celles où une divergence prix-volume apparaît souvent précurseur d’un 
affaiblissement ou d’une inversion du mouvement. 

 

 

Implémentation utilisée : 

 
 
 

 

C) Ratios de chandeliers (corps / ombres) 

Les ratios de chandeliers décrivent la façon dont le prix a évolué à l’intérieur de la 
séance : part du mouvement réalisée dans le corps (open → close) versus les extrêmes 
atteints (high/low). Ils fournissent une information fine sur la structure intrajournalière, sans 
recourir à une granularité infra-day. 

On définit : 

• le corps relatif :  
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• l’ombre supérieure relative : 

 

 

• l’ombre inférieure relative : 

 

Avec  un terme de stabilisation numérique. 

Un corps large associé à des ombres réduites traduit un mouvement directionnel 
affirmé au cours de la séance. À l’inverse, des ombres longues et un corps restreint reflètent 
davantage le rejet des extrêmes, l’hésitation ou des épisodes de micro-volatilité. Ces 
variables sont utiles pour distinguer les journées de conviction nette des configurations plus 
neutres ou techniques. 

Implémentation utilisée : 

 

 

 

III Méthodologie expérimentale 

3.1 Construction du label de régime  
A) Contexte 

Les marchés financiers et plus particulièrement le Bitcoin ne se comportent jamais 
comme un processus homogène dans le temps. Ils évoluent par régimes successifs, chacun 
caractérisé par un niveau distinct d’incertitude, de dispersion des prix et de pression 
directionnelle. 

Dans la littérature quantitative, cette organisation temporelle se traduit par un 
phénomène robuste : la volatilité ne se distribue pas uniformément mais se regroupe en 
blocs cohérents, souvent appelés volatility clusters. 
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Certaines phases se déroulent sous un régime d’équilibre local, où les variations 
quotidiennes demeurent contenues autour de leur norme récente ; d’autres basculent dans 
un régime d’expansion du risque, marqué par une amplification soudaine et persistante de la 
dispersion des rendements. 

Ces transitions ne sont ni aléatoires, ni purement erratiques : elles portent une 
structure temporelle que les modèles séquentiels (LSTM) sont précisément conçus pour 
capturer. 

L’objectif du label est donc de formaliser cette segmentation naturelle du marché en 
construisant une mesure opérationnelle capable d’indiquer si, à une date t, le système se 
situe dans un environnement de risque “normalisé” ou dans une phase où le niveau 
d’incertitude anticipé excède significativement sa référence historique. 

Ce choix est motivé par une considération opérationnelle : il formalise la distinction 
entre un environnement de risque “normalisé” et des phases où la volatilité anticipée 
dépasse significativement son niveau de référence. Un marché “calme” n’est pas celui où il 
ne se passe rien, mais celui où les fluctuations demeurent proportionnées à leur histoire 
récente. 

À l’inverse, un marché “tendu” est celui où les chocs futurs attendus dépassent la 
capacité du marché à absorber ces variations, signalant potentiellement l’arrivée d’un 
changement d’équilibre, d’un stress latent, ou d’une transition de régime. 

 

B) Définition opérationnelle du label 

 La définition du label exploite exclusivement des objets déjà établis dans la section 2 : 
rendements logarithmiques et volatilité réalisée. L’idée centrale est d’évaluer si la volatilité 
réalisée dans les jours à venir dépasse significativement la volatilité de fond estimée sur une 
fenêtre longue. 

La construction se déroule en trois temps : 

1. Mesure de la volatilité future, obtenue en calculant la dispersion réalisée des 
rendements dans l’horizon  . Cette mesure représente la quantité 
d’incertitude que le marché s’apprête à délivrer immédiatement après t. 

 

2. Mesure de la volatilité de référence, calculée sur une fenêtre plus longue (30 jours), 
qui reflète le niveau de risque “normalisé” du régime courant. 
 
 

3. Comparaison des deux niveaux via un ratio : 
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Lorsque ce ratio excède 1.20, le marché bascule dans un régime considéré comme 
significativement plus volatil que sa norme récente. Ce seuil de +20 % est cohérent avec les 
discontinuités empiriques observées sur BTC : la majorité des épisodes de stress se 
manifeste par une rupture nette de cette magnitude. Le label reflète ainsi une structure de 
volatilité observée dans les données, plutôt qu’une segmentation arbitraire imposée a priori. 

Le label obtenu est volontairement binaire : non pas pour simplifier, mais pour 
stabiliser l’analyse séquentielle et éviter les ambiguïtés propres aux partitions multi-classes. 
Il constitue un objet propre, robuste, interprétable, et surtout parfaitement adapté à l’étude 
de la mémoire temporelle. 

Implémentation utilisée 

 

 

 
 
 
 

    3.2 Normalisation des features 

Les indicateurs décrits précédemment présentent des échelles et des distribu]ons 
hétérogènes : rendements logarithmiques poten]ellement non bornés, mesures de vola]lité, 
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écarts normalisés aux moyennes mobiles, oscillateurs bornés entre 0 et 100, proxies de flux 
et de par]cipa]on. Avant l’entraînement des modèles (régressions de base, MLP, LSTM), il est 
nécessaire de ramener ces variables dans un espace numérique cohérent, afin d’éviter 
qu’une famille de features ne domine ar]ficiellement les autres du seul fait de son 
échelle.Dans cette première expérimentation, nous retenons une approche simple et 
standard : chaque indicateur est centré et réduit individuellement sur l’échantillon d’étude.  

Pour une variable (colonne j du jeu de données), on calcule : 

• la moyenne empirique sur l’horizon considéré ; 

• l’écart-type empirique . 

Puis on construit la version normalisée : 

 

Cette transformation est appliquée colonne par colonne à l’ensemble des features 
utilisées dans les modèles, sans toucher à la variable cible (le régime) ni aux horodatages. 
Elle a trois effets principaux : 

• aligner les ordres de grandeur des différentes familles d’indicateurs (direction, 
tendance, volatilité, participation) ; 

• stabiliser la dynamique des gradients lors de l’optimisation des modèles neuronaux ; 
• limiter le poids arbitraire des variables naturellement plus volatiles (rendements, 

volatilité réalisée, proxies de volume). 

Dans le cadre de ce travail exploratoire, la normalisation est réalisée en deux temps : les 
moyennes et écarts-types sont estimés une fois pour toutes sur le seul bloc d’entraînement, 
puis appliqués telles quelles aux données de validation. Les modèles de base (régression 
logistique, MLP) et le modèle séquentiel utilisent ainsi exactement le même vecteur de 
features normalisées, ce qui permet de comparer de manière homogène leurs performances 
tout en respectant strictement la causalité temporelle. 

Implémentation utilisée : 
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3.3 Mise en forme séquentielle des données (fenêtrage LSTM) 

A) Contexte  

Les modèles séquentiels et en particulier les architectures de type LSTM (Long Short-
Term Memory) ne consomment pas des observations indépendantes, mais des segments 
temporels structurés. 
L’objectif n’est plus d’expliquer un label à partir d’un vecteur instantané, mais d’identifier la 
cohérence interne d’une trajectoire, ses ruptures, et les motifs réguliers qui précèdent un 
changement de régime. 

Pour cela, les données normalisées issues des sections précédentes doivent être 
transformées en un tenseur tridimensionnel : 

 

 

 

où : 

• N : nombre total de séquences exploitables, 
• T : longueur de la fenêtre temporelle (lookback), 
• F : nombre total de features normalisées. 

Cette opération appelée sliding window transformation fait passer la table chronologique 
bidimensionnelle classique : 

à un objet structuré contenant, pour chaque date 𝑡, l’historique complet nécessaire au 
LSTM : 
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Ce format respecte strictement la causalité : aucune information future n’est injectée dans la 
séquence d’entrée.  

B) Justification du choix du lookback 

Le choix de la fenêtre temporelle 𝑇est un paramètre crucial : une fenêtre trop courte 
manque de contexte, une fenêtre trop longue dilue l’information pertinente et augmente le 
bruit. Ici, l’objectif n’est pas de prédire un prix mais d’analyser la mémoire des régimes de 
volatilité. 
 

La littérature empirique sur BTC montre que : 

• les cycles de compression → explosion de volatilité s’étalent généralement sur 15 à 
40 jours, 

• les transitions de tendance structurelle se forment sur 1 à 3 mois, 
• les clusters de volatilité persistante ont une demi-vie comprise entre 8 et 20 jours. 

Un horizon de T = 60 jours s’imposent donc comme un compromis robuste : 

• suffisamment long pour capter les débuts et fins de clusters, 
• suffisamment court pour éviter la sur-dispersion et le “vanishing information”, 
• cohérent avec les pratiques des desks volatility / derivatives en quant research. 

Ce choix améliore aussi la stabilité numérique du LSTM en lui offrant des séquences riches 
mais non dégénérées. 

 

C) Construction formelle des séquences 

Soit une série chronologique normalisée : 

 

Pour chaque date 𝑡 ≥ 𝑇, on définit une séquence : 

 

Le label associé est simplement : 
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avec garantie que : 

 

D) Précautions causales et alignement 

Afin d’éviter tout leakage temporel : 
 

• Le label à prédire est positionné sur la fin de la fenêtre, jamais à l’intérieur. 
• Aucun indicateur technique n’utilise de données futures, tous sont calculés en 

backward-looking. 
• La normalisation est effectuée avant le fenêtrage, mais exclusivement sur la zone 

d’entraînement. 
• Le split train/val/test est strictement chronologique, garantissant la validité 

empirique du protocole. 
• Les NaN initiaux liés aux rolling windows sont supprimés avant construction des 

séquences. 
 

Ces contraintes rapprochent l’expérience des pratiques industrielles, où la causalité 
opérationnelle est impérative (risk, execution, derivatives modelling). 
 

 E) Schéma explicatif 

 

 



Clovis Hilmarcher 
HilmarCorp – R&D Division 

23 

Implémentation utilisée : 

 

 

 

3.4 Modèles étudiés 

A) Contexte 

Sur la base du jeu de données construit dans les sections précédentes (rendements 
journaliers, indicateurs dérivés normalisés, label binaire de régime fondé sur la volatilité 
réalisée), trois familles de modèles de classification sont considérées, toutes entraînées sous 
le même protocole temporel. L’objectif n’est pas d’optimiser une performance prédictive 
absolue, mais de tester empiriquement l’existence d’une mémoire exploitable dans 
l’enchaînement des régimes de marché. 

Deux grandes classes de modèles sont mises en regard. 

La première regroupe des modèles instantanés sans mémoire explicite : une 
régression logistique et un perceptron multicouche (MLP). Pour ces modèles, chaque 
observation est décrite par un vecteur de variables explicatives normalisées
(rendements, volatilité réalisée, écarts aux moyennes mobiles, indicateurs de participation, 
etc.) ; l’ordre dans lequel ces configurations de marché se succèdent n’est jamais pris en 
compte. La seconde classe repose sur un modèle séquentiel à mémoire explicite de type 
LSTM, qui reçoit en entrée, pour chaque date t, une trajectoire normalisée de 60 jours 

et peut, en principe, exploiter la structure temporelle des transitions de régime. 

Dans ce cadre, la régression logistique joue le rôle de référence linéaire pleinement 
interprétable : elle teste l’existence d’une séparation affine entre régimes dans l’espace des 
indicateurs. Le MLP étend ce dispositif en autorisant des combinaisons non linéaires des 
mêmes variables, tout en restant strictement amnésique : il ne voit jamais l’historique, 
seulement l’instantané du vecteur . Le LSTM, enfin, occupe un rôle différent : il ne se 
limite pas à raffiner une frontière de décision dans , mais cherche à quantifier l’apport 
spécifique de la dynamique séquentielle en modélisant directement l’évolution des 
trajectoires sur 60 jours. 
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La comparaison entre ces modèles est conduite à protocole égal : mêmes variables 
normalisées, même label de régime, même découpage chronologique train/validation, 
même horizon d’étude. Toute différence de performance ne peut donc provenir que de la 
nature de l’information effectivement consommée – instantanée pour les baselines, 
séquentielle pour le LSTM. Les sous-sections suivantes détaillent la formulation et le rôle 
méthodologique des baselines non séquentielles, qui serviront de point d’ancrage pour 
l’interprétation des résultats du LSTM. 

 

B) Régression logistique (baseline linéaire) 

La régression logistique constitue le point de départ le plus simple pour la 
classification des régimes. Le modèle ne cherche pas à exploiter l’historique des trajectoires, 
mais uniquement la configuration du vecteur  à la date t. Chaque journée est ainsi 
résumée par un vecteur normalisé  indiquant si le marché se trouve, immédiatement 
après t, dans un régime de volatilité future “normalisée”. ou “tendue” au sens 
de la section 3.1. 

La régression logistique associe à chaque observation une probabilité 
conditionnelle d’être en régime tendu de la forme : 

 

 

Où  est le vecteur de coefficients et   un biais scalaire. La frontière de 

décision correspond au demi-espace défini par dans l’espace des indicateurs : 
un changement de signe de cette quantité se traduit par un basculement de probabilité de 
part et d’autre du seuil ½  

 

Les paramètres   sont  estimés par maximum de vraisemblance régularisé. En 
notant  la probabilité prédite et l’ensemble des indices d’entraînement, la 
fonction de coût considérée est : 

 

 

Avec  un paramètre de régularisation L2. Le terme quadratique sur w limite la 
sensibilité du modèle à des co-mouvements spécifiques de certaines variables – notamment 
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celles liées à la direction et à la volatilité, naturellement plus volatiles – et impose une 
structure plus parcimonieuse aux coefficients.  

Dans ce dispositif, la régression logistique joue deux rôles distincts. D’une part, elle 
offre une référence interprétable : chaque composante de w peut être lue comme un poids 
directionnel porté par une variable donnée (rendement court terme, volatilité réalisée, 
volume relatif, etc.), ce qui permet d’identifier les indicateurs qui contribuent le plus, de 
manière linéaire, à la séparation entre régimes. D’autre part, elle fournit une borne 
inférieure “sans mémoire” sur ce qu’il est possible d’expliquer à partir du seul instantané des 
indicateurs, sans aucune information sur l’ordre dans lequel les états de marché se 
succèdent. 

Les performances de cette baseline linéaire sur l’échantillon de validation servent de 
point de comparaison direct pour évaluer l’apport des modèles non linéaires (MLP) et, 
surtout, du modèle séquentiel LSTM : toute amélioration significative devra être interprétée 
à la lumière de l’information supplémentaire exploitée (non-linéarité instantanée ou 
dynamique temporelle). 

Implémentation utilisée : 

En pratique, la régression logistique est implémentée via la classe LogisticRegression 
de la bibliothèque scikit-learn, avec pénalisation L2 par défaut et optimisation par maximum 
de vraisemblance régularisé. Les variables explicatives sont préalablement centrées-
réduites, et le découpage train/validation est strictement chronologique, identique à celui 
utilisé pour les autres modèles. Le code correspondant est le suivant : 

 

 

C) Perceptron multicouche (MLP) 

Le perceptron multicouche (MLP) prolonge la régression logistique en autorisant des 
transformations non linéaires du vecteur de variables explicatives. Là où le modèle linéaire 
ne peut séparer les régimes que par un hyperplan dans l’espace des indicateurs, le MLP 
introduit des couches cachées apprenant des combinaisons non linéaires des mêmes 
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signaux. La structure temporelle reste cependant inchangée : comme pour la régression 
logistique, chaque observation est traitée indépendamment, sur la base de uniquement. 

On considère toujours pour chaque date t un vecteur normalisé  et un label 

binaire  . Dans cette étude, on retient une architecture simple à deux couches 
cachées entièrement connectées. En notation compacte, le réseau réalise la transformation 
suivante :  

 

 

où :  et  sont les matrices de poids des couches cachées, 
 le vecteur de poids de la couche de sor]e, les biais correspondants,  

la sigmoïde logis]que qui renvoie une probabilité d’être en régime tendu. 

Les paramètres du réseau 

 

sont estimés en minimisant une log-perte binaire régularisée sur l’échantillon 
d’entraînement : 

 

où le second terme contrôle la norme des poids des couches cachées (régularisation 
L2) afin de limiter le sur-apprentissage sur des configurations rares de variables. 
L’optimisation est réalisée par descente de gradient stochastique (type Adam dans 
l’implémentation scikit-learn), avec itérations successives jusqu’à convergence numérique 
ou jusqu’à un nombre maximal d’epochs. L’entraînement s’effectue sur les mêmes variables 
normalisées et avec le même découpage chronologique train/validation que pour la 
régression logistique, de façon à garantir une comparaison cohérente. 

Dans ce cadre, le MLP occupe trois fonctions méthodologiques complémentaires. Il 
fournit d’abord une baseline non linéaire sans mémoire : en le comparant à la régression 
logistique, on mesure ce que l’on gagne simplement en passant d’un classificateur linéaire à 
un modèle capable de capturer des interactions complexes entre indicateurs – par exemple 
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une configuration de type “volatilité réalisée élevée + volume relatif anormalement fort + 
MACD en extension” – tout en restant aveugle à la structure séquentielle. Il sert ensuite de 
test de richesse du vecteur de variables : si le MLP n’améliore pas significativement la 
classification par rapport à la régression logistique, cela suggère que l’essentiel de 
l’information pertinente est capté de manière quasi linéaire, et que le bénéfice potentiel 
d’un modèle séquentiel résidera principalement dans la mémoire temporelle plutôt que 
dans la non-linéarité statique. Enfin, le MLP constitue un point de comparaison direct pour le 
LSTM : les deux modèles partagent exactement le même espace de variables normalisées, 
mais seul le LSTM observe l’historique complet . L’écart de performance entre les 
deux renseigne donc sur la contribution propre de la dynamique séquentielle par rapport à 
une simple projection non linéaire de l’instantané. 

 

Implémentation utilisée : 

Le MLP est implémenté via la classe MLPClassifier de scikit-learn, avec deux couches 
cachées de tailles 64 et 32 neurones, fonction d’activation ReLU, pénalisation L2 par défaut 
et un maximum de 500 itérations d’optimisation. Les mêmes matrices  et vecteurs 
de labels  que pour la régression logistique sont utilisés. Le code est le suivant : 

 

 

 

D) Réseau séquentiel à mémoire explicite (LSTM) 

L’approche séquentielle introduit une différence conceptuelle majeure par rapport 
aux modèles précédents. Ni la régression logistique ni le MLP n’ont accès à l’ordre temporel 
dans lequel les configurations de marché se succèdent : chaque état est traité isolément, 
comme si l’enchaînement des régimes n’avait aucune structure exploitable. Or l’organisation 
empirique de la volatilité (clusters persistants, phases de compression puis d’expansion, 
transitions progressives entre épisodes de calme et de stress) suggère qu’une forme de 
dépendance temporelle peut être porteuse d’information. . Cette mémoire n’est 
pas une simple moyenne mobile : elle résulte d’un mécanisme récursif qui pondère 
dynamiquement ce qu’il convient de retenir, d’oublier ou de mettre à jour. 

Le LSTM (Long Short-Term Memory) introduit précisément une mémoire interne 
capable d’intégrer, pour chaque observation, non seulement l’état courant , mais aussi la 
trajectoire historique . Cette mémoire n’est pas une simple moyenne mobile : elle 
résulte d’un mécanisme récursif qui pondère dynamiquement ce qu’il convient de retenir, 
d’oublier ou de mettre à jour. 
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Formellement, à partir d’une séquence normalisée , le LSTM maintient un 
état caché et un état mémoire  mis à jour à chaque pas  via :  

 

 

où est une sigmoïde logistique,  le produit élément-par-élément, et les matrice
les paramètres appris lors de l’entraînement. Le réseau prétend alors à une 

probabilité d’appartenance au régime tendu via : 

 

Les paramètres  sont estimés par minimisation d’une log-perte 
binaire régularisée, comme pour le MLP, mais appliquée sur des séquences : 

 

L’entraînement s’effectue sans aucun chevauchement entre validation et 
entraînement, et avec une normalisation strictement établie sur l’horizon d’apprentissage, 
afin d’éviter tout leakage temporel lié au calcul des statistiques de normalisation. La 
comparaison avec la régression logistique et le MLP est réalisée à protocole égal : mêmes 
features, même label, même split chronologique, même critère de validation. La seule 
source de différence réside donc dans l’accès éventuel au passé . 

 Cette distinction structurelle place le LSTM dans un rôle méthodologique précis : il ne 
cherche pas à obtenir la meilleure métrique de classification possible, mais à quantifier 
l’existence d’une dépendance exploitable dans la dynamique de transition entre régimes. Si 
les performances du LSTM dépassent significativement celles du MLP, cela indique que 
l’information pertinente n’est pas contenue uniquement dans la configuration instantanée 
des indicateurs, mais également dans la trajectoire qui les relie, confirmant empiriquement 
la présence d’une mémoire séquentielle dans l’organisation des régimes de volatilité. 

Implémentation utilisée : 

Dans ces premières expériences, le modèle séquentiel est implémenté en PyTorch via 
un module RegimeLSTM. La partie récurrente est constituée d’une couche LSTM à 128 unités 
cachées (hidden_size = 128, num_layers = 1, batch_first = True), alimentée par des 
séquences de longueur 60 construites comme en 3.3. 
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La sortie de la couche LSTM (état caché à la dernière date de la fenêtre) est ensuite 
projetée par un petit réseau entièrement connecté de type  

 

dont les deux composantes correspondent aux logits des classes “régime normalisé” 
(0) et “régime tendu” (1). 

L’optimisation est réalisée avec l’algorithme Adam (taux d’apprentissage fixé à 10-3, 
sur des mini-batches de 32 séquences, en minimisant une entropie croisée binaire standard 
(fonction CrossEntropyLoss de PyTorch), sans pondération explicite des classes. Le run de 
référence présenté en section 4 repose sur 40 époques d’apprentissage successives, avec 
suivi systématique de la log-perte et de l’accuracy sur l’échantillon de validation à chaque 
epoch. 

 

 

3.5 Protocole d’entraînement et d’évaluation 

L’ensemble des modèles est entraîné sous un protocole commun, de manière à ce 
que les différences de performance reflètent uniquement la nature de l’information utilisée 
(instantanée vs séquentielle), et non des choix de calibration hétérogènes. Le protocole 
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contrôle successivement : le découpage temporel, la gestion du déséquilibre de classes, la 
procédure d’optimisation et les métriques d’évaluation. 

 

A) Découpage temporel et respect de la causalité 

Le jeu de données séquentiel construit en 3.3 est scindé en deux blocs chronologiques 
contigus : 

• Entraînement : premier bloc couvrant environ 80 % des observations, du 17 août 
2017 jusqu’à une date de coupure  ; 

• Validation : bloc résiduel couvrant les 20 % de dates restants, de  jusqu’au 10 
novembre 2025. 

Une séquence  appartient à un unique bloc, déterminé par sa dernière date 
t. Les statistiques de normalisation sont recalculées exclusivement sur le bloc 
d’entraînement, puis appliquées telles quelles au bloc de validation. Aucun recouvrement 
n’est donc possible : ni au niveau des labels, ni au niveau des features. 

Dans ces premières expériences, aucun bloc de test distinct n’est encore utilisé : 
toute l’analyse hors-échantillon repose sur le segment de validation, afin de concentrer les 
observations disponibles sur l’estimation des régimes et la comparaison des architectures. 

 

B) Gestion du déséquilibre de classes 

Le label binaire défini en 3.1 est par construction asymétrique : sur l’horizon étudié, les 
régimes de volatilité élevée (classe 1) représentent une fraction minoritaire des observations 
(de l’ordre d’un tiers), la classe “calme” (0) restant dominante. 

Dans ces premières expériences, on ne modifie pas la fonction de perte pour refléter cet 
équilibre : la régression logistique, le MLP et le LSTM sont tous entraînés en minimisant une 
log-perte binaire standard (entropie croisée) sur le bloc d’apprentissage, sans pondération 
explicite des classes. 

Le déséquilibre est pris en compte au niveau de l’évaluation, via des métriques robustes 
au déséquilibre via des métriques robustes au déséquilibre, en particulier la balanced 
accuracy, le rappel et le F1-score de la classe tendue, ainsi que l’inspection détaillée des 
matrices de confusion. L’objectif n’est donc pas de “compenser” le déséquilibre dans la loss, 
mais de le rendre explicite dans la lecture des performances. 

C) Procédure d’optimisation et critères d’arrêt 
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Pour chaque modèle, l’entraînement est conduit en minimisant la log-perte pondérée 
sur le bloc d’apprentissage, avec sélection des itérations par surveillance de la performance 
sur la validation : 

 • la régression logistique et le MLP sont optimisés via les solveurs standard de 
scikit-learn (maximisation de vraisemblance régularisée pour la régression, descente de 
gradient stochastique type Adam pour le MLP), avec un nombre maximal d’itérations fixé à 
500 ; 

 • le LSTM est entraîné sur des mini-batches de séquences (taille de batch 32), 
en minimisant la même log-perte binaire standard, avec l’optimiseur Adam (taux 
d’apprentissage 10-3). Dans le run de référence, le modèle est entraîné pendant 40 époques 
successives ; la log-perte et l’accuracy sont monitorées à chaque epoch sur l’échantillon de 
validation, comme illustré par les courbes de la section 4.2. Aucun mécanisme d’early 
stopping n’est activé à ce stade : l’objectif est de documenter pleinement la dynamique 
d’overfitting du modèle séquentiel. Dans tous les cas, aucune information du bloc de test 
n’est utilisée à ce stade : le test reste strictement réservé à l’évaluation finale, une fois tous 
les hyperparamètres fixés. 

 

D) Métriques d’évaluation 

L’objectif des modèles n’est pas seulement de maximiser une précision globale, mais 
de mesurer finement la capacité à détecter les régimes de volatilité élevée, qui constituent 
la classe rare mais économiquement la plus critique. L’évaluation est donc conduite sur 
l’échantillon de validation à partir des probabilités prédites  et des labels 
observés . 

Pour un seuil de décision  , on définit la prédiction binaire 

 

0n retient comme seuil neutre, afin de ne favoriser a priori ni la classe normale ni la 
classe tendue. 

Sur l’ensemble des dates de validation , on construit la matrice de confusion : 

• TP (true positives) : nombre de dates avec  et  ; 
• FP (false positives) :  et  ; 
• TN (true negatives) :  et  ; 
• FN (false negatives) :  et . 

À partir de ces quantités, plusieurs métriques complémentaires sont considérées : 

Précision globale (accuracy) 
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qui mesure la part d’observations correctement classées. Cette métrique est informative sur 
la performance moyenne, mais peut être trompeuse en présence de déséquilibre de classes. 

 

Sensibilité au régime tendu (rappel de la classe 1) 

 

qui quantifie la proportion de régimes de forte volatilité effectivement détectés. 
Économiquement, il s’agit de la capacité du modèle à signaler les épisodes de risque élevé. 

 

Spécificité du régime normal (rappel de la classe 0) 

 

qui mesure la capacité à ne pas déclencher de signal de stress lorsque le marché reste dans 
un régime de volatilité normalisée. 

Balanced accuracy / macro-rappel 

Pour neutraliser l’effet du déséquilibre, on suit la moyenne des rappels par classe : 

 

Cette quantité donne à chaque régime le même poids, indépendamment de sa fréquence 
d’apparition. 

F1-score sur le régime tendu 

Le F1 met l’accent sur la détection correcte de la classe 1 en agrégeant précision et rappel : 
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Un  élevé indique que le modèle identifie les régimes tendus sans générer trop de faux 
signaux. 

Qualité probabiliste : log-perte et AUC 

Indépendamment du seuil   la qualité des probabilités  est évaluée via : 

la log-perte binaire (déjà utilisée comme fonction d’entraînement) sur la validation, 

 

qui pénalise fortement les prédictions très confiantes mais erronées ; 

L’aire sous la courbe ROC (AUC), obtenue en faisant varier  et en traçant le couple 
(taux de faux positifs, taux de vrais positifs). Un AUC proche de 0,5 correspond à un tirage 
aléatoire, tandis qu’une valeur nettement supérieure traduit une bonne capacité de ranking 
entre régimes calmes et régimes tendus. 

En complément, la courbe précision–rappel pour la classe tendue (régime 1), 
construite en faisant varier le seuil et en reportant la précision en fonction du rappel. Dans 
un contexte de déséquilibre de classes, ce diagnostic met directement en regard la 
proportion d’épisodes de forte volatilité effectivement détectés et la quantité de faux 
signaux générés. 

En pratique, les résultats sont reportés pour un seuil fixe  ainsi que sous forme 
de courbes ROC et de tableaux de classification. L’analyse comparative entre les trois 
modèles (régression logistique, MLP, LSTM) se concentre principalement sur : 

 • le balanced accuracy et le F1 pour juger la détection des régimes de risque 
élevé ; 

 • la log-perte et l’AUC, pour apprécier la qualité probabiliste des signaux. 

Ces métriques fournissent un cadre homogène pour comparer les baselines instantanées et 
le modèle séquentiel, et pour isoler l’apport propre de la mémoire temporelle dans la 
classification des régimes de volatilité. 

Enfin, au-delà de ces indicateurs scalaires, l’évaluation s’appuie sur une couche de 
diagnostics graphiques et d’expériences dérivées construits à partir des sorties quotidiennes 
du pipeline Python (timestamp, prix de clôture, label observé, prédiction discrète, 
probabilité ). La section 4.4 exploite cette table de diagnostic pour représenter le prix du 
BTC coloré par régime observé/prédit, la trajectoire de  en regard du prix et du seuil 0,5 , 
ainsi que les corrélations de Pearson entre  et un sous-ensemble de variables explicatives 
clefs ; ces figures précisent visuellement où le modèle bascule en régime tendu et quels 
drivers dominent ce basculement. La section 4.5 s’appuie sur les mêmes métriques 
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(balanced accuracy, F1, log-perte, AUC) pour comparer des ablations ciblées du LSTM 
(suppression explicite des features de volatilité, réduction de la longueur de séquence) et 
quantifier la sensibilité du signal séquentiel à ces briques d’information. Enfin, la section 4.6 
projette le signal dans un cadre d’allocation simple : une stratégie jouet qui neutralise 
l’exposition lorsque dépasse un seuil donné. Son equity et ses indicateurs de risque 
(rendement cumulé, volatilité annualisée, drawdown maximal, ratio de Sharpe) sont calculés 
de manière mécanique à partir des rendements quotidiens du BTC pondérés par l’exposition, 
puis comparés à un buy-and-hold passif ; l’exercice reste illustratif mais montre comment un 
filtre de régime probabiliste peut être intégré, sans hypothèses supplémentaires, dans des 
modèles de contrôle du risque plus complets. 

 

IV Résultats empiriques 

4.1 Performances globales des modèles 

Les performances des trois familles de modèles sur l’échantillon de validation sont 
résumées dans le Tableau 1. Les métriques sont celles définies en section 3.5 (accuracy, 
balanced accuracy, rappel de la classe tendue, F1-score de la classe 1, log-perte et AUC), 
calculées avec un seuil de décision fixé à 0,5 sur la probabilité prédite. Les résultats 
correspondent au run de référence avec une fenêtre séquentielle de 60 jours et 40 époques 
d’apprentissage pour le LSTM. 

Tableau 1 – Performances des modèles sur l’échantillon de validation 

(seq_len = 60, epochs = 40) 

Modèle Accuracy Balanced 
accuracy 

Recall (classe 
1) F1 (classe 1) Log-perte AUC 

Logistique 0,719 0,668 0,514 0,549 0,551 0,750 
MLP 0,577 0,587 0,616 0,492 1,860 0,628 

LSTM (60j) 0,535 0,526 0,500 0,416 3,378 0,532 

 

Sur cet échantillon, la régression logistique s’impose comme une baseline solide. 
Avec une accuracy d’environ 0,72, une balanced accuracy proche de 0,67 et une AUC autour 
de 0,75, un classificateur strictement linéaire, appliqué au seul vecteur instantané 
d’indicateurs normalisés, parvient déjà à séparer de manière non triviale les régimes de 
volatilité “normalisée” et “tendue”. Cela confirme qu’une part significative du signal de 
régime est effectivement encodée dans la configuration cross-sectionnelle des features 
(rendements récents, volatilité réalisée, écarts aux moyennes mobiles, participation), sans 
mobiliser la structure séquentielle. 
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 Le perceptron multicouche (MLP) ne transforme pas cette base en gain massif de 
performance. Malgré sa capacité à modéliser des interactions non linéaires entre 
indicateurs, il n’améliore pas substantiellement l’AUC par rapport à la régression logistique 
et se dégrade nettement en log-perte. Ce profil est typique d’un modèle un peu plus 
expressif entraîné sur un volume de données limité : il s’adapte davantage à certaines 
configurations rares, mais cette flexibilité supplémentaire ne se traduit pas par une 
généralisation plus robuste. Dans ce cadre, le MLP joue surtout son rôle de test de richesse 
du vecteur de variables : le fait qu’il ne surpasse pas nettement la baseline linéaire suggère 
que, à fréquence journalière, l’essentiel de l’information exploitable sur le régime reste 
capturable par une combinaison quasi linéaire des indicateurs.  

 Le LSTM, enfin, introduit une mémoire explicite sur des séquences de 60 jours. Sur 
l’échantillon d’entraînement, le réseau atteint très rapidement des accuracies proches de 1, 
ce qui indique qu’il est parfaitement capable de reconstituer les labels à partir des 
trajectoires observées. En validation, en revanche, l’accuracy, la balanced accuracy et l’AUC 
retombent à des niveaux voisins de 0,53–0,54, tandis que la log-perte reste élevée. Ce 
décalage marqué entre apprentissage et validation est caractéristique d’un sur-
apprentissage séquentiel : la dynamique que le LSTM a apprise sur l’historique 
d’entraînement ne se prolonge pas de manière stable hors-échantillon. Dans le protocole 
retenu (données journalières, label binaire de volatilité future, architecture LSTM simple), 
l’accès à l’historique complet ne se traduit donc pas par un gain systématique par 
rapport aux baselines sans mémoire. 

Pris ensemble, ces résultats ne remettent pas en cause l’hypothèse d’une mémoire 
de marché, mais en bornent la portée dans ce cadre précis. Ils indiquent que, sur Bitcoin et à 
cette granularité, une part non négligeable de l’information de régime est déjà contenue 
dans la photographie instantanée des indicateurs, et que la composante séquentielle 
exploitable par un LSTM vanilla reste, au mieux, de faible amplitude. Cette observation 
motive la suite du programme de recherche : affiner la définition du label, explorer des 
architectures séquentielles plus contraintes et tester des fréquences plus fines, afin de 
distinguer ce qui relève d’une véritable mémoire de régime de ce qui n’est qu’un artefact de 
construction de features. 

 

4.2 Courbes d’apprentissage et stabilité de l’optimisation 

Pour interpréter les résultats du Tableau 1, il est instructif d’examiner la dynamique 
d’apprentissage du modèle séquentiel. La Figure 4.2a représente, sous forme de surface, 
l’évolution de l’accuracy du LSTM sur l’échantillon d’entraînement et sur la validation au fil 
des époques. 

 

Figure 4.2a – Accuracy entraînement / validation du LSTM en fonction des epoch . 
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Cette visualisation met en évidence un écart croissant entre les deux séries : la 
“crête” rouge correspondant à l’accuracy d’entraînement progresse rapidement au-delà de 
0,9, tandis que la partie “validation” de la surface reste nettement plus basse et tend vers un 
plateau autour de 0,52–0,55. Autrement dit, le réseau apprend à mémoriser très 
efficacement les séquences vues pendant l’entraînement, mais cette compétence ne se 
transpose pas de manière symétrique hors-échantillon. 

La Figure 4.2b détaille ce constat en traçant séparément les courbes d’accuracy 
entraînement et validation. La courbe “train” croît quasi monotoniquement de ~0,69 à des 
valeurs proches de 1 sur 40 époques, confirmant la capacité du LSTM à reconstituer presque 
parfaitement les labels sur l’historique d’apprentissage. À l’inverse, la courbe “val” décroît 
progressivement depuis ~0,68 vers ~0,53, avant de se stabiliser dans une bande étroite 
autour de ce niveau. 

 
 
 
 
 
 
 
Figure 4.2b – Accuracy entraînement vs validation du LSTM (seq_len = 60, 40 époques) 
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Cette divergence entre accuracy entraînement et validation est typique d’un sur-
apprentissage séquentiel : le modèle exploite sa forte capacité pour ajuster finement les 
trajectoires du jeu d’entraînement, mais la structure temporelle qu’il en déduit n’est pas 
suffisamment stable pour généraliser. 

Les courbes de log-perte (Figure 4.2c) racontent la même histoire sous un angle 
probabiliste. La log-perte d’entraînement décroît régulièrement d’environ 0,6 jusqu’à des 
valeurs quasi nulles, signe que le réseau produit des probabilités très confiantes et 
globalement correctes sur les séquences vues. La log-perte de validation suit au contraire 
une trajectoire croissante, passant de ~0,6 à plus de 3,3 au fur et à mesure des époques : le 
LSTM devient de plus en plus sûr de prédictions hors-échantillon qui sont fréquemment 
erronées. 

Figure 4.2c – Log-perte entraînement vs validation du LSTM (seq_len = 60, 40 epoch 
) 

 

On observe ainsi un comportement numériquement sain (pas d’explosion de 
gradients, pas de divergence de la loss), mais mal régularisé : la complexité du LSTM est 
clairement excessive par rapport à la quantité d’information réellement exploitable à cette 
granularité journalière et pour ce label de volatilité future. En pratique, un schéma d’early 
stopping couperait l’apprentissage dès les premières époques, avant que la log-perte de 
validation n’ait commencé à se dégrader ; même dans cette fenêtre courte, cependant, le 
LSTM ne surpasse pas de façon robuste la régression logistique. 
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Pour la régression logistique et le MLP, l’optimisation scikit-learn (non reproduite ici 
pour ne pas alourdir la présentation) converge en quelques dizaines, respectivement 
quelques centaines d’itérations, avec une log-perte validation monotone décroissante et 
sans oscillations marquées. Les difficultés observées sur le modèle séquentiel ne 
proviennent donc pas d’un problème d’optimisation, mais d’un mismatch structurel entre la 
richesse du LSTM et le signal effectivement présent dans les données à ce niveau de 
résolution. 

4.3 Diagnostics de classification par régime 

Au-delà des scores agrégés du Tableau 1, l’enjeu est de comprendre comment les 
modèles se trompent : quelles dates de stress sont effectivement captées, lesquelles sont 
manquées, et à quel prix en faux signaux. Cette sous-section explore donc la structure fine 
de la classification par régime, en s’appuyant sur les matrices de confusion et sur le 
comportement des scores de probabilité lorsqu’on fait varier le seuil de décision. 

 

A) Régression logistique  

 

Figure 4.3a – Matrice de confusion de la régression logistique sur la validation. 

 

La matrice de confusion de la régression logistique (Figure 4.3a) confirme son statut 
de baseline solide. Sur l’échantillon de validation, le modèle identifie 95 épisodes de régime 
tendu sur 185, soit un rappel d’environ 51%. En parallèle, il ne déclenche un faux signal de 
stress que pour 66 dates sur 371 où le marché reste en réalité en régime normalisé, ce qui 



Clovis Hilmarcher 
HilmarCorp – R&D Division 

39 

correspond à un taux de faux positifs proche de 18%. Autrement dit, le classificateur 
parvient à capturer une part significative des épisodes de forte volatilité tout en conservant 
un niveau de bruit raisonnable sur la classe calme. 

Figure 4.3b – Courbe ROC de la régression logistique. 
 

 

 

La courbe ROC associée (Figure 4.3b) se situe nettement au-dessus de la diagonale 
aléatoire. L’aire sous la courbe, , traduit une bonne capacité de ranking 
probabiliste : en moyenne, lorsqu’on compare deux dates tirées au hasard, l’une en régime 
calme et l’autre en régime tendu, le modèle attribue une probabilité plus élevée au bon 
scénario dans trois cas sur quatre. C’est cohérent avec la bonne balanced accuracy observée 
en 4.1. 

Figure 4.3c – Courbe précision–rappel (classe 1) de la régression logistique. 
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La courbe précision–rappel pour la classe 1 (Figure 4.3c) affine cette lecture. Pour des 
seuils élevés, le modèle atteint des précisions supérieures à 0,9 au prix d’un rappel plus 
faible : on détecte alors uniquement les épisodes de stress les plus “évidents”. Lorsqu’on 
diminue le seuil, le rappel augmente mais la précision décroît progressivement vers des 
valeurs proches de 0,5–0,6. Ce compromis est typique d’un modèle bien calibré sur une 
classe minoritaire : on dispose d’un curseur explicite permettant d’ajuster la tolérance aux 
faux signaux selon l’usage (déclenchement d’alertes de risque, filtrage de régimes pour un 
modèle de pricing, etc.). 

 

Dans l’ensemble, la régression logistique fournit donc un profil de détection équilibré 
: elle ne capture pas tous les épisodes de forte volatilité, mais produit un ranking stable et 
contrôlable, ce qui en fait une référence robuste pour la suite 

 

B) Perceptron multicouche 

Figure 4.3d – Matrice de confusion du MLP sur la validation. 

 

Le perceptron multicouche adopte un comportement sensiblement plus agressif vis-
à-vis de la classe tendue. La matrice de confusion (Figure 4.3d) montre que le MLP identifie 
114 régimes 1 sur 185, soit un rappel d’environ 62%, supérieur à celui de la régression 
logistique. Ce gain se paie toutefois par une forte augmentation du bruit : le nombre de faux 
positifs passe à 164 dates (contre 66 pour la régression logistique), ce qui correspond à un 
taux de faux signaux proche de 44 % sur la classe calme. En pratique, cela se traduit par une 
forte hausse du taux de faux positifs : le modèle déclenche fréquemment des signaux de 
stress alors que le marché reste en régime de volatilité normalisée : il alerte davantage, mais 
au prix de nombreux épisodes où le marché reste en réalité dans un régime de volatilité 
normalisée. 
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Figure 4.3e – Courbe ROC du MLP 

 

 

La courbe ROC (Figure 4.3e) reflète cette situation intermédiaire. L’AUC se situe 
autour de 0,63, nettement au-dessus du hasard, mais en deçà de la régression logistique. Le 
MLP est capable de produire un ranking probabiliste non trivial entre régimes, mais cette 
hiérarchie est moins nette : pour un même niveau de rappel, le taux de faux positifs reste 
plus élevé. 

Figure 4.3f – Courbe précision–rappel (classe 1) du MLP. 

 

 

La courbe précision–rappel de la classe 1 (Figure 4.3f) confirme ce diagnostic. Si la 
précision atteint brièvement des valeurs proches de 1 pour un rappel quasi nul (seuil 
extrêmement conservateur), elle décroît rapidement vers des niveaux de l’ordre de 0,4–0,5 
lorsque l’on cherche à récupérer une fraction significative des régimes tendus. Le gain de 
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rappel par rapport à la régression logistique se fait donc au prix d’une dégradation marquée 
de la précision : le MLP fournit une option “plus sensible” pour détecter des stress, mais sans 
amélioration globale du compromis. 

D’un point de vue R&D, ce comportement suggère que la capacité non linéaire du 
MLP est sous-exploité par rapport à la structure réelle du signal : le modèle parvient à sur-
adapter certaines configurations extrêmes, mais ne stabilise pas un ranking probabiliste 
meilleur que celui de la baseline linéaire. 

C) LSTM  

Figure 4.3g – Matrice de confusion du LSTM sur la validation. 

 

 

Le LSTM présente un tout autre profil. Sa matrice de confusion (Figure 4.3g) est 
presque symétrique : le réseau détecte 90 régimes tendus sur 180 environ, soit un rappel 
voisin de 50%, et génère un nombre comparable de faux positifs sur la classe calme (163 
dates). La balanced accuracy se retrouve ainsi légèrement au-dessus de 0,5, exactement 
dans l’ordre de grandeur observé au Tableau 1. Le modèle n’échoue pas complètement, 
mais son pouvoir de discrimination net entre régimes reste très limité. 

 Figure 4.3h – Courbe ROC du LSTM 
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 La courbe ROC du LSTM (Figure 4.3h) se situe à peine au-dessus de la diagonale 
aléatoire, avec un AUC d’environ 0,53. Cela signifie qu’en moyenne, le réseau n’est guère 
meilleur qu’un tirage au sort pour ordonner les dates par probabilité de régime tendu. Ce 
constat fait écho aux courbes d’apprentissage de la section 4.2 : le LSTM mémorise 
parfaitement l’échantillon d’entraînement, mais la structure temporelle qu’il a captée ne se 
traduit pas par un ranking robuste hors-échantillon. 

Figure 4.3i – Courbe précision–rappel (classe 1) du LSTM. 
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 La courbe précision–rappel (Figure 4.3i) achève de montrer la faiblesse du signal 
exploité. La précision oscille autour de 0,3–0,4 sur une large plage de rappels, sans plateau 
clairement dominant. Là où la régression logistique offrait une zone de travail avec une 
précision nettement supérieure à 0,6, le LSTM propose un compromis presque indifférencié : 
augmenter le rappel ne dégrade plus tellement la précision, tout simplement parce que 
l’ensemble du classement est déjà très bruité. 

 Dans ce cadre expérimental précis (fréquence journalière, label binaire de volatilité 
future, architecture LSTM relativement simple), la mémoire séquentielle captée par le 
réseau apparaît donc faiblement exploitable pour distinguer durablement les régimes. 

D) Lecture croisée 

Pris ensemble, ces diagnostics par régime convergent vers une image cohérente avec 
la section 4.1 : 

 • La régression logistique fournit le meilleur équilibre entre détection des 
régimes tendus, contrôle des faux positifs et qualité du ranking probabiliste. 

 • Le MLP augmente le rappel sur la classe de stress, mais au prix d’un flot de 
faux signaux qui dégrade la lisibilité opérationnelle du modèle. 

 • Le LSTM, malgré des courbes d’apprentissage très flatteuses en entraînement, 
n’apporte pas de gain structuré : ses matrices de confusion, ses courbes ROC et précision–
rappel témoignent d’un signal séquentiel encore trop fragile à cette granularité. 

Pour la suite du programme de recherche, ces éléments plaident pour un double 
mouvement : stabiliser d’abord le signal statique (label, features, calibration) autour de la 
baseline logistique, puis n’introduire des architectures séquentielles plus sophistiquées 
qu’en présence d’indices plus clairs de mémoire de régime : par exemple à des fréquences 
plus fines, sur des labels ajustés ou avec des contraintes de régularisation plus fortes. 
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4.4 Structure séquentielle et diagnostics graphiques 

Les sections précédentes se concentraient sur des métriques agrégées (accuracy, 
AUC, F1, log-perte). Pour apprécier concrètement ce que “voit” le modèle séquentiel, on 
examine maintenant la manière dont le LSTM organise les régimes au fil du temps sur le bloc 
de validation. On se focalise ici sur le LSTM, qui est le seul modèle à disposer d’une mémoire 
explicite sur 60 jours ; les baselines instantanées ne produiraient qu’un signal point-par-
point, sans structure temporelle propre. 

La Figure 4.4a superpose le prix quotidien du BTC avec la coloration des régimes 
observés (panneau supérieur) et prédits par le LSTM (panneau inférieur). 

Figure 4.4a : prix BTC coloré par régime observé / prédit 

 

Visuellement, les régimes “tendus” observés se concentrent, comme attendu, autour 
des phases de volatilité marquée (accélérations haussières, corrections rapides), tandis que 
les périodes de range ou de tendance plus régulière restent majoritairement en régime 
“normalisé”. Le panneau inférieur montre que le LSTM reprend bien ces grands motifs : les 
points orange s’agrègent sur les mêmes zones de pente forte et de retournements, ce qui 
indique que le modèle réagit aux épisodes de stress. En revanche, la densité de signaux 
tendus prédits est nettement plus élevée que dans les labels observés : le LSTM élargit 
systématiquement les plages de régime 1 autour des épisodes de volatilité, ce qui se traduit, 
dans les matrices de confusion, par un taux de faux positifs élevé pour la classe tendue. 

La Figure 4.4b détaille la trajectoire probabiliste sous-jacente. Elle représente le prix 
BTC (axe de gauche) et la probabilité prédite de régime tendu   (axe de droite), 
avec le seuil neutre 0,5 matérialisé par une ligne en pointillés.  

Figure 4.4b : prix et probabilité de régime tendu 
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 La probabilité de régime tendu adopte un profil quasi binaire : elle alterne 
rapidement entre des niveaux proches de 0 et proches de 1, avec très peu de valeurs 
intermédiaires stables. Ce comportement est cohérent avec les diagnostics de log-perte : le 
LSTM devient extrêmement confiant sur ses prédictions, mais cette confiance ne généralise 
pas bien hors-échantillon, d’où une log-perte de validation élevée. On retrouve également le 
biais déjà mis en évidence : sur de longues portions de l’échantillon   reste très souvent au-
dessus de 0,5, ce qui ancre le modèle dans un régime “stress” quasi permanent. Le signal 
séquentiel capturé par le LSTM est donc réel (les pics de probabilité coïncident globalement 
avec les épisodes de volatilité), mais il est exploité de façon trop agressive pour produire un 
classement probabiliste robuste. 

Enfin, la Figure 4.4c cherche à relier ce signal de régime aux variables explicatives 
sous-jacentes. Elle montre, sur le bloc de validation, les corrélations de Pearson entre la 
probabilité de régime tendu  et un sous-ensemble de features clefs, triées par valeur 
absolue. 

Figure 4.4c : corrélation features / probabilité de régime tendu 
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Plusieurs motifs apparaissent clairement. D’une part, des indicateurs de momentum 
et de “trend strength” comme macd_hist, macd_signal, ret_10d ou les moyennes mobiles 
(ma_20, ma_200) présentent des corrélations marquées avec p_t : les phases de momentum 
haussier soutenu (histogramme MACD largement positif, prix au-dessus de la moyenne long 
terme) sont associées à des probabilités de stress plus faibles, tandis que les configurations 
de momentum dégradé ou de retournement s’accompagnent de p_t élevés. D’autre part, les 
mesures de volatilité et de largeur de bande (vol_30d, vol_7d, boll_width) sont, comme 
attendu, positivement corrélées à la probabilité de régime tendu : lorsque la dispersion des 
rendements et l’amplitude des bandes de Bollinger augmentent, le LSTM tend à basculer en 
régime 1. Enfin, des indicateurs de flux et de liquidité comme mfi_14 contribuent également 
au signal, en modulant la probabilité de stress en fonction de la pression acheteuse ou 
vendeuse. 

Ces diagnostics graphiques complètent ainsi les tableaux de performance : ils 
montrent que, malgré un sur-apprentissage prononcé et une calibration probabiliste 
perfectible, le LSTM exploite bien des patterns séquentiels économiquement plausibles – 
alternance de phases de calme et de stress liées à la combinaison de momentum, de 
volatilité et de structure de tendance. La question n’est donc pas tant de savoir si une 
“mémoire de marché” existe, mais de la contraindre et de la régulariser suffisamment pour 
obtenir un signal de régime exploitable à fréquence quotidienne. 

 

4.5 Résultats des ablations 

Les expériences précédentes se concentraient sur un LSTM « complet » observant 60 
jours d’historique et exploitant l’ensemble des indicateurs décrits en section 2. Cette sous-
section examine, à architecture fixe, l’impact (i) de la suppression explicite des features de 
volatilité et (ii) du raccourcissement de la fenêtre séquentielle à 15 jours. L’objectif n’est pas 
d’optimiser la performance absolue – qui reste inférieure à celle de la régression logistique – 
mais de documenter la sensibilité du signal séquentiel aux briques d’information les plus 
naturelles : taille de la mémoire et mesure de la dispersion des rendements. 

Les trois variantes considérées sont : 
 
 • full_60d : LSTM avec toutes les features, séquence de 60 jours ; 
 • no_vol_60d : mêmes features, à l’exception de vol_7d, vol_30d et boll_width, 
toujours sur 60 jours ; 
 • full_15d : LSTM complet mais avec une fenêtre raccourcie à 15 jours. 
 
Les métriques de validation correspondantes sont résumées dans le Tableau 2. 
	

Variante Accuracy Balanced accuracy Recall (classe 1) F1 (classe 1) Log-perte AUC 
full_60d 0,535 0,518 0,467 0,399 2,38 0,53 
no_vol_60d 0,586 0,544 0,417 0,400 1,73 0,60 
full_15d 0,568 0,569 0,574 0,468 2,29 0,58 
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Deux enseignements principaux se dégagent. Premièrement, les features de volatilité 
ne constituent pas, dans ce protocole, un levier évident de généralisation pour le LSTM. La 
variante no_vol_60d améliore l’accuracy (≈ 0,59) et l’AUC (≈ 0,60) par rapport au modèle 
complet sur 60 jours, tout en maintenant un F1 pour la classe tendue du même ordre de 
grandeur. La baisse du rappel sur les régimes tendus (≈ 0,42 versus ≈ 0,47) indique que le 
LSTM sans volatilité devient légèrement plus conservateur sur la détection des épisodes de 
stress, ce qui est cohérent avec la réduction d’information sur l’ampleur des mouvements. 
Le fait que cette ablation n’entraîne pas de dégradation catastrophique suggère que la 
structure du régime est déjà largement intégrée via les indicateurs de tendance, de 
momentum et de structure de prix. 
 

Deuxièmement, la profondeur de mémoire joue un rôle plus ambigu. Le modèle 
full_15d – qui n’observe que 15 jours d’historique – atteint la meilleure balanced accuracy (≈ 
0,57) et le meilleur rappel de la classe tendue (≈ 0,57), au prix d’un AUC intermédiaire (≈ 
0,58) et d’une log-perte encore élevée. Autrement dit, un horizon plus court semble aider le 
LSTM à mieux équilibrer les deux régimes en fréquence, et à capter davantage d’épisodes de 
forte volatilité, mais sans pour autant produire un ranking probabiliste plus robuste. Cette 
sensibilité à la longueur de séquence est cohérente avec la structure des clusters de 
volatilité observés empiriquement (section 3.3) : une fenêtre très longue (60 jours) mélange 
potentiellement plusieurs micro-régimes et renforce le risque d’overfitting séquentiel, tandis 
qu’une fenêtre plus courte réagit davantage aux configurations locales. 
 

Dans tous les cas, aucune de ces variantes n’égale la régression logistique en termes 
d’AUC ou de log-perte. Les ablations doivent donc être lues comme des diagnostics internes 
: elles montrent que le comportement du LSTM est effectivement modulé par la présence 
explicite de la volatilité et par la profondeur de mémoire, mais qu’à cette granularité 
journalière la “mémoire de marché” capturable par un LSTM vanilla reste faible, et nécessite 
des architectures plus contraintes ou des labels plus ciblés pour devenir exploitable. 
	
	

4.6 Illustration d’usage : stratégie de filtrage de risque 

 Pour illustrer de façon concrète ce que l’on peut faire avec le signal de régime
 issu du LSTM, on construit une stratégie jouet de filtrage de risque sur le 

bloc de validation. L’idée est volontairement minimale : lorsque la probabilité de régime 
tendu dépasse un certain seuil, l’allocation se replie en cash ; sinon, elle reste entièrement 
investie en BTC. 

Soit  le prix de clôture et 

 

le rendement simple quotidien. On définit une exposition binaire 
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avec un seuil neutre , cohérent avec la règle de décision binaire utilisée dans les 
sections précédentes. La trajectoire d’equity de la stratégie filtrée s’écrit alors 

 

tandis que le buy–and–hold passif correspond au cas  

 

 

Figure 4.6 : Toy Vs Buy and hold  

 

La Figure 4.6 montre l’equity normalisée de ces deux stratégies sur le bloc de 
validation. Visuellement, la courbe filtrée suit le profil général du marché, mais avec des 
phases de plateau lorsque le modèle anticipe un régime tendu et coupe l’exposition. 

Pour quantifier cette illustration, on calcule sur les rendements quotidiens correspondants : 

 • le rendement cumulé  ; 

 • la volatilité annualisée (fréquence quotidienne) ; 

 • le maximum drawdown, , sans taux sans risque. 
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Les résultats sont récapitulés dans le Tableau 3. 

Tableau 3 – Statistiques de la stratégie jouet de filtrage de risque (bloc de validation) 

Stratégie cum_return vol_annual max_drawdown Sharpe 
Buy & hold 0,6615 0,4545 -0,2810 0,9749 

Stratégie filtrée LSTM 0,1539 0,3387 -0,2506 0,4517 

  

Sur cette fenêtre, la stratégie filtrée réduit effectivement la volatilité et le drawdown par 
rapport au buy–and–hold, mais au prix d’un rendement cumulé nettement inférieur et d’un 
Sharpe divisé par plus de deux. Autrement dit, le signal de régime fourni par le LSTM permet 
déjà de produire une trajectoire d’equity plus lissée, mais il n’est pas, en l’état, suffisamment 
propre ni bien calibré pour améliorer le couple rendement/risque de manière robuste. 

Cet exercice doit donc être lu comme une illustration méthodologique, et non 
comme un backtest opérationnel : le seuil n’est pas optimisé, les coûts de transaction sont 
négligés, et aucune contrainte d’implémentation réelle n’est prise en compte. Il montre 
néanmoins comment un signal de régime peut être encapsulé dans une règle d’allocation 
simple de type « long/cash », et préfigure l’usage cible de ce type de modèle : servir de 
brique de filtrage du risque dans des stratégies d’allocation plus complètes (multi-actifs, 
multi-horizons), où le signal de régime viendrait moduler l’exposition globale plutôt que 
générer seul des décisions de trading. 

 

V Discussion et limites 
 

5.1 Lecture critique des résultats empiriques 
 

Les résultats empiriques obtenus dans cette première itération confirment qu’une 
partie significative de la dynamique de régime sur Bitcoin peut déjà être capturée par des 
modèles statiques relativement simples. À protocole expérimental constant même vecteur 
de features, même définition du label de régime, même découpage temporel la régression 
logistique s’impose comme référence de base. La frontière linéaire qu’elle apprend, 
appliquée à l’instantané des indicateurs techniques, parvient à séparer de manière robuste 
les phases de volatilité future “normalisée” des épisodes plus tendus, avec une combinaison 
équilibrée d’accuracy globale, de balanced accuracy et d’AUC. Autrement dit, la simple 
structure affine dans l’espace des features organise déjà le marché en deux régimes 
économiquement lisibles. 

Le perceptron multicouche n’apporte qu’un bénéfice marginal. La non-linéarité 
supplémentaire permet certes de rehausser ponctuellement le rappel sur la classe de stress, 
mais au prix d’une dégradation de la calibration probabiliste et d’une augmentation sensible 
des faux signaux. Le compromis global reste moins favorable que celui de la régression 
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logistique, ce qui suggère que, dans ce cadre précis, le gain d’expressivité ne compense pas 
le coût de variance ajoutée par l’architecture. 

Le LSTM, conçu pour exploiter explicitement 60 jours d’historique, met en évidence 
un phénomène différent. Sur l’échantillon d’entraînement, le modèle converge vers une 
quasi-reconstruction parfaite des labels, avec une log-perte très faible et des probabilités 
extrêmes proches de 0 ou 1. Sur le bloc de validation, cette confiance se retourne en fragilité 
: l’accuracy et la balanced accuracy se rapprochent d’un niveau à peine supérieur au hasard, 
l’AUC recule nettement et la log-perte augmente de manière significative. Les diagnostics 
graphiques confirment ce diagnostic : la probabilité de régime tendu adopte un profil quasi 
binaire, basculant violemment entre les deux extrêmes, et reste durablement ancrée au-
dessus du seuil 0,5 sur de longues périodes. Les épisodes de volatilité marquée sont bien 
détectés, mais le modèle tend ensuite à étendre exagérément la zone de stress, ce qui se 
traduit mécaniquement par un excès de faux positifs dans les matrices de confusion. 

Les expériences d’ablation réalisées à architecture constante apportent un éclairage 
complémentaire. La suppression des features directement liées à la volatilité ne provoque 
pas d’effondrement du LSTM ; au contraire, certaines métriques hors-échantillon 
s’améliorent légèrement, en particulier l’accuracy et l’AUC, même si le signal de stress 
devient un peu plus conservateur. Cela laisse penser que la structure de régime est déjà 
largement encodée dans les indicateurs de tendance, de momentum et de structure de prix, 
et que les proxies de volatilité, dans ce paramétrage initial, n’apportent qu’un gain 
d’information marginal. De même, le raccourcissement de la séquence à quinze jours 
améliore la balanced accuracy et le rappel de la classe tendue, sans pour autant rattraper la 
régression logistique en termes de qualité probabiliste. Une fenêtre plus courte semble donc 
permettre au LSTM de mieux suivre les configurations locales de marché, mais sans lui 
donner encore un véritable avantage structurel sur les baselines statiques. 

Enfin, la stratégie de filtrage de risque construite à partir de joue pleinement son 
rôle d’illustration. Sur le segment de validation, la trajectoire d’equity filtrée, qui réduit 
l’exposition dès que la probabilité de régime tendu dépasse un seuil neutre, présente une 
volatilité et un drawdown maximal plus contenus que le buy-and-hold, mais au prix d’un 
rendement cumulé nettement inférieur. Dans la configuration actuelle, le signal de régime 
agit donc davantage comme un dispositif de freinage capable de couper une partie des 
extrémités de distribution que comme un moteur d’amélioration du couple 
rendement/risque. Cet exercice doit être lu comme une preuve de concept : il montre que le 
signal peut être injecté dans une logique de contrôle du risque, mais ne constitue pas, en 
l’état, un overlay prêt pour une mise en production. 

 

5.2 Portée et limites du cadre expérimental 

Le cadre expérimental retenu dans cette première note est volontairement restrictif 
et explique en partie la hiérarchie observée entre modèles. La granularité temporelle, 
d’abord, est exclusivement journalière. Le label de régime est défini à partir de la volatilité 
réalisée future sur un horizon court, mais toute la micro-dynamique intraday – là où se 
cristallisent souvent les transitions de régime, les séquences de liquidations et les chocs de 
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liquidité – est, par construction, absente. Dans ce contexte, l’avantage informationnel d’un 
modèle séquentiel est mécaniquement limité : la mémoire qu’il peut exploiter n’est qu’une 
mémoire d’“états journaliers déjà agrégés”. 

L’univers d’actifs est, ensuite, réduit au seul BTC spot. Si Bitcoin constitue un 
laboratoire naturel pour ce type d’exercice, il ne représente ni la diversité des profils de 
risque des autres cryptoactifs, ni les interactions de régimes entre actifs liés (ETH, indices de 
marché, produits dérivés). Il n’est donc pas possible, à ce stade, de conclure sur la 
transférabilité du signal de régime à un univers multi-actifs, ni sur son comportement dans 
des portefeuilles réellement diversifiés. 

Le vecteur de features repose essentiellement sur des constructions issues des prix et 
des volumes : rendements multi-horizons, indicateurs de momentum, mesures de tendance, 
volatilités réalisées et largeurs de bandes, proxies de participation via volumes relatifs et 
MFI. Les dimensions on-chain, dérivées (basis futures, funding, skew d’options) ou macro-
financières ne sont pas encore intégrées ; de même, aucune information de carnet d’ordres 
ou de microstructure n’est utilisée. Le modèle apprend donc un régime au sens strict de 
“régime de prix”, sans vision directe de la structure de flux ou des contraintes de 
financement qui peuvent, en pratique, déclencher ou prolonger des phases de stress. 

Le choix du label de régime constitue une autre simplification importante. La 
dichotomie “calme / tendu” dérivée d’un ratio de volatilité future sur une volatilité de 
référence offre une grille de lecture claire, mais unidimensionnelle. Elle ne distingue pas les 
épisodes de stress haussier des chocs baissiers, ne tient pas compte de la profondeur des 
drawdowns, ni des propriétés de récupération post-crise. Plusieurs configurations de marché 
très différentes peuvent être agrégées dans la même classe de régime, ce qui limite 
mécaniquement la quantité d’information exploitable par les modèles. 

Enfin, l’architecture séquentielle elle-même reste minimaliste. Le LSTM utilisé est 
volontairement simple, avec une seule couche, un nombre d’unités maîtrisé, et sans recours 
à des mécanismes de régularisation avancés (dropout, pénalisation spécifique des poids 
récurrents, calibrations ex-post des probabilités). L’évaluation hors-échantillon repose sur un 
unique split chronologique et ne met pas encore en œuvre de schémas de validation croisée 
temporelle plus sophistiqués. Quant à la stratégie de filtrage de risque, elle est 
volontairement nette exposition binaire, absence de frais de transaction, absence de 
contraintes de turnover afin de rester lisible. L’ensemble de ces choix sont adaptés à une 
première exploration, mais constituent autant de points de vigilance lorsqu’il s’agit 
d’interpréter la portée des résultats. 

5.3 Pistes de développement et intégration produit 

Dans cette perspective, les résultats présentés ici doivent être lus comme un jalon de 
recherche plutôt que comme un aboutissement. Ils confirment d’abord que, à fréquence 
quotidienne et pour un label de volatilité simple, la majeure partie du signal exploitable sur 
les régimes de marché est déjà accessible à des modèles statiques bien spécifiés. Ils valident 
ensuite l’existence d’une mémoire séquentielle non triviale les diagnostics graphiques du 
LSTM montrent clairement que certaines configurations de trajectoires sont associées à des 
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profils de risque différenciés mais soulignent qu’une architecture vanilla, peu régularisée, 
n’est pas suffisante pour transformer cette mémoire en avantage probabiliste robuste. 

Les prochains développements s’orienteront donc dans deux directions 
complémentaires. Sur le plan méthodologique, l’enjeu est d’enrichir simultanément le label 
de régime, le vecteur de features et les architectures séquentielles, de manière à mieux 
aligner la définition du problème de prédiction avec les besoins d’un moteur d’allocation 
réel. Cela implique d’explorer des labels multi-niveaux (par exemple en intégrant 
explicitement la dimension de drawdown ou des horizons de risque différenciés), d’ouvrir le 
jeu de données à des signaux on-chain, dérivés et macro, et de tester des modèles plus 
structurés architectures convolutives temporelles, mécanismes d’attention, modèles à 
changement de régime explicite avec des protocoles de régularisation et de validation 
croisée adaptés à la faible fréquence des observations. 

Sur le plan “produit”, l’objectif est de transformer le signal de régime en véritable 
brique de gestion. La stratégie jouet de filtrage présentée en section 4.6 fournit un canevas 
naturel pour développer des overlays plus réalistes : expositions graduelles plutôt que 
binaires, intégration de coûts de transaction, cibles de volatilité explicites, contraintes de 
drawdown, interaction avec d’autres moteurs d’alpha directionnels ou relatifs. À terme, 
l’ambition est que ce type de modèle de régime ne soit plus uniquement un objet de 
recherche isolé, mais qu’il alimente un bloc de contrôle du risque au sein d’une architecture 
plus large d’allocation systématique, où chaque moteur : tendance, carry, signaux on-chain, 
facteurs macro dialogue avec une estimation cohérente de l’état de marché. 

Dans cette optique, la présente note joue pleinement son rôle : elle établit une 
baseline quantitative robuste, met en évidence les limites des approches séquentielles 
naïves et trace un chemin clair vers les itérations suivantes du programme de R&D. 

 

Conclusion 
Cette première série d’expérimentations séquentielles sur le Bitcoin avait un objectif 

volontairement circonscrit : tester, sur un cadre simple mais propre, l’existence d’une 
mémoire exploitable dans l’enchaînement des régimes de volatilité. À partir d’un label 
binaire fondé sur la volatilité réalisée future, d’un jeu compact d’indicateurs techniques 
normalisés et d’un protocole d’entraînement strictement causal, trois familles de modèles 
ont été mises en regard : une régression logistique, un MLP sans mémoire et un LSTM 
observant 60 jours d’historique. Les résultats empiriques sont sans ambiguïté : dans ce cadre 
précis, la baseline linéaire surperforme systématiquement les architectures plus expressives 
en termes d’AUC et de log-perte, tandis que le LSTM sur-apprend rapidement et ne parvient 
pas à transformer son accès à l’historique en gain robuste hors-échantillon.   

Ce constat ne remet pas en cause l’hypothèse d’une organisation du marché en 
régimes, mais en borne la portée à cette granularité. À fréquence journalière, une part 
significative de l’information de régime semble déjà contenue dans la configuration 
instantanée des indicateurs (rendements multi-horizons, volatilité réalisée, écarts aux 
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moyennes mobiles, proxies de participation) ; la composante proprement séquentielle, telle 
qu’un LSTM vanilla peut l’exploiter sur 15 à 60 jours, apparaît de faible amplitude et très 
sensible au sur-apprentissage. Les ablations menées sur la longueur de séquence et sur les 
features de volatilité confirment ce diagnostic : le comportement du LSTM est bien modulé 
par ces briques d’information, mais aucun réglage simple ne permet de franchir de manière 
stable le plafond fixé par la régression logistique. 

Pour autant, l’exercice n’est pas négatif ; il est structurant. La note a permis (i) de 
poser un pipeline de données et de features entièrement reproductible, (ii) de définir un 
label de régime explicite, ancré dans la volatilité réalisée future plutôt que dans des 
heuristiques ad hoc, (iii) de comparer de façon homogène des modèles avec et sans 
mémoire, et (iv) de documenter la structure séquentielle du signal de régime via des 
diagnostics graphiques et une stratégie jouet de filtrage de risque. L’ensemble fournit une 
base empirique claire : il existe bien un signal de régime exploitable sur BTC au quotidien, 
mais ce signal est essentiellement “statique” dans ce cadre, et ne justifie pas encore l’usage 
d’architectures séquentielles complexes en production. 

Les limites du dispositif sont, en miroir, tout aussi claires : un seul actif (BTC), une 
fréquence daily, un label binaire de volatilité future relativement simple, une architecture 
LSTM volontairement minimale et l’absence de backtests pleinement opérationnels 
intégrant frictions et contraintes d’allocation. Ces choix étaient assumés pour cette V1, afin 
de privilégier la lisibilité du protocole et la traçabilité des résultats ; ils fixent désormais la 
feuille de route des itérations suivantes. 

La suite du programme de recherche s’organise donc naturellement autour de trois 
axes. Sur le plan des données et des labels, il s’agira d’explorer des définitions plus riches de 
régime (multi-classe, vol cible, drawdown anticipé, régimes conjoints prix/volume), de tester 
des fréquences plus fines (intra-day) et d’étendre l’analyse à un panier d’actifs liquides. Sur 
le plan des modèles, les efforts porteront sur des architectures séquentielles plus 
contraintes et mieux régularisées, calibrées en priorité à partir de la baseline logistique. 
Enfin, sur le plan “produit”, le signal de régime sera progressivement intégré, non comme 
moteur unique de décision, mais comme couche de filtrage de risque et de contrôle 
d’exposition dans des moteurs d’allocation plus complets. 

En ce sens, cette note joue bien son rôle : non pas proposer un modèle séquentiel 
“clé en main” pour le trading sur Bitcoin, mais clarifier ce que la donnée raconte réellement 
sur la mémoire de marché à cette échelle, et tracer un chemin réaliste vers des briques de 
régimes utilisables dans les futurs moteurs d’allocation de HilmarCorp. 

 

 

 


